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Background The prediction inference of time series

Time series is a discrete-time stochastic process, i.e., {Xt, t ∈ Z}. Its realization is
called time series data, e.g., heights of ocean tides, and counts of sunspots.

Prediction inference is about determining Optimal Predictor (OP), usually in L2
or L1 sense, and Prediction Interval (PI), percentile or centered version, of future
value XT+k, k ≥ 1, based on observed {X0, . . . , XT }. We are concerned about the
Coverage Rate (CVR) and Length (LEN) of PI.
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Background The prediction inference of time series

Simple case:

If {X0, . . . , XT } are i.i.d. with a common distribution. Take sample mean and sample
median to be L2 and L1 OPs, respectively. Rely on sample quantile values to build PIs.

If it is not, we can apply an invertible function to transform original data to be i.i.d,
which is one type of Model-free prediction; see the work of Politis (2003); Chen and
Politis (2019); Wang and Politis (2022).

Time series model:

We assume that the time series data is generated by some underlying mechanism:

Xt = G(Xt−p, ϵt), (1)

where:
G(·, ·) could be any suitable linear/non-linear function that makes the time series
geometrically ergodic.
ϵt is called innovation and assumed to be i.i.d. with appropriate moments and
independent with Xt−i, i ≥ 1.
Xt−p represents {Xt−1, . . . , Xt−p}.
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Background Classical methods

Casual and invertible linear models, e.g., Xt =
∑p

i=1 aiXt−i + ϵt; ϵt ∼ N(0, σ2
ϵ ).

â When the model information is known:
One-step-ahead L2 conditional OP XL2

T+1 is:

E(XT+1|XT , . . . , X0) =
p∑

i=1

aiXT+1−i.

Iterating this prediction can get multi-step-ahead L2 OP XL2
T+k.

A (1 − α) · 100% PI of XT+k centered at XL2
T+k can be expressed as:[

XL2
T+k − zα/2

√
Var[eT (k)], XL2

T+k + zα/2
√

Var[eT (k)]
]
,

where eT (k) is XT+k − XL2
T+k.

â When the model information is unknown:
Plug in the coefficient estimators {âi}pi=1.
It fails if the innovation is non-normal.

Limitations: Infeasible to incorporate non-linear models; rely on the normality
assumption; hard to extend to multi-step-ahead OP XL1

T+1.
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Background Classical methods

Non-linear Autoregressive (NLAR) models, e.g., Xt = m(Xt−p) + ϵt.
â When the model information is known:

One-step-ahead L2 OP XL2
T+1 = m(XT+1−p), conditional on observed data.

For multi-step ahead prediction, the iterative method is no longer L2 optimal.
Pemberton (1987) may be the first attempt to get exact L2 OP based on
numerical integral. Guo et al. (1999) further developed an analytical predictor
based on innovation distribution Fϵ to approximate the exact L2 OP.

â When the model information is unknown:
For above methods, need to replace m(·) and Fϵ with m̂(·) and F̂ϵ , respectively.

See Lee and Billings (2003) for a review.

Limitations: Hard to find L1 OP and PI.
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Background Monte Carlo simulation & Bootstrap approaches

MC simulation for k-step-ahead prediction:

In the context of prediction, especially for NLAR models, Monte Carlo (MC)
simulation and Bootstrap can give a way to out the dilemma.

Take general model Eq. (1) as an example, when the model is known to us:

â Apply MC simulation to do predictions:
Simulate {ϵ(i)T+1, . . . , ϵ

(i)
T+k}Mi=1 from Fϵ .

Compute pseudo {X(i)
T+k}Mi=1, i.e., X(i)

T+ j = G(XT+ j−p, ϵ
(i)
T+ j), for j = 1, . . . , k.

Take sample mean and median of {X(i)
T+k}Mi=1 to approximate XL2

T+k and XL1
T+k,

respectively. Take corresponding quantile values to approximate PIs with
arbitrary coverage rates. We call such type of PI Simulation PI (SPI).

Limitations: In practice, model information is generally not known to participators.
Thus, this prediction is Oracle.
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Background Monte Carlo simulation & Bootstrap approaches

The first step of our work—Bootstrap for k-step-ahead prediction:

When the model information is unknown to us, the model G(·, ·) and innovation
distribution Fϵ need to be estimated. Assume we can get a consistent estimator Ĝ(·, ·)
and F̂ϵ which is the empirical distribution of residuals, then:

â Apply Bootstrap to do predictions:
Bootstrap {ϵ̂(i)T+1, . . . , ϵ̂

(i)
T+k}Mi=1 from F̂ϵ .

Compute pseudo {X̂(i)
T+k}Mi=1 iteratively, i.e., X̂(i)

T+ j = Ĝ(XT+ j−p, ϵ̂
(i)
T+ j), for

j = 1, . . . , k.
Take sample mean and median of {X̂(i)

T+k}Mi=1 to approximate XL2
T+k and XL1

T+k,
respectively. Take corresponding quantile values to approximate PIs with
arbitrary coverage rates. We call such type of PI Quantile PI (QPI).

Limitations: In practice with finite samples, this Bootstrap-based PI suffers
undercoverage due to several reasons; the requirement to get a consistent model
estimation and separate residuals.
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Forward bootstrap prediction for a general model
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Forward bootstrap prediction for a general model

Politis (2015) proposed the forward bootstrap method to include the estimation
variability into the PI for improving the coverage performance for a small sample
size. They also applied the predictive residuals to build PI.

We further extend this bootstrap prediction method to the general model Eq. (1)
Xt = G(Xt−p, ϵt).

Main Algorithm:
Step 1: Do estimations to get Ĝ(·, ·) and F̂ϵ . Then, perform the bootstrap
prediction to get X̂T+k.
Step 2: Generate a pseudo series {X∗0, . . . , X∗T+k} by viewing Ĝ(·, ·) and F̂ϵ as the
true model and innovation distribution in the bootstrap world.
Step 3: Re-estimate model to get Ĝ∗(·, ·) with {X∗0, . . . , X∗T }; Re-define
{X∗T−p+1 = XT−p+1, . . . , X∗T = XT }. Then do the bootstrap prediction with Ĝ∗(·, ·)
and F̂ϵ to get X̂∗T+k. Record the predictive root X∗T+k − X̂∗T+k in the bootstrap
world.
Step 4: Repeat the above process M times, collect M predictive roots and take its
empirical distribution to approximate the distribution of XT+k − X̂T−k.
Step 5: The (1 − α)100% PI for XT+k centered at X̂T+k can be approximated by
[X̂T+k + q(α/2), X̂T+k + q(1 − α/2)], where q(α) is the α-quantile of the empirical
distribution of X∗T+k − X̂∗T+k.
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Forward bootstrap prediction for a general model

Remark 1: This algorithm provides a framework to do predictions when model
information is unknown. It can directly work for the cases where G(·, ·) is in a
parametric or non-parametric form.

Remark 2: The deployment of Step 3 to get OP in the bootstrap world is necessary
since it exactly mimics the prediction process in the real-world bootstrap for NLAR
models, so that the center of bootstrap PI is still at the OP.

Remark 3: The model estimation variability is captured due to Step 3 again.
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Forward bootstrap prediction for a general model

For some specific linear/non-linear models, this forward bootstrap method presents
better prediction performance according to the empirical CVR and LEN compared to
other bootstrap-based methods; see Thombs and Schucany (1990); Pascual et al.
(2004, 2006) for other approaches.

The success is due to that we can get a pertinence PI (PPI) with this specifically
designed algorithm. The pertinence comes from capturing the model estimation
variability.

Key components of PPI:

supa |F̂ϵ(a) − Fϵ(a)|
p
→ 0.

supa |P(τT A∗m ≤ a) − P(τT Am ≤ a)|
p
→ 0,

For example, we assume that we can decompose G(Xt−p, ϵt) as M(Xt−p) + ϵt;
A∗m = M̂∗(x) − M̂(x); Am = M̂(x) − M(x).

Remark 4: Compared to the recent application of Conformal Prediction on time
series; see Xu and Xie (2021); similar preliminary conditions are assumed. However,
their prediction focus on unconditional PIs which satisfy the minimal coverage rate,
i.e., P(XT+k ∈ CαT+k) ≥ 1 − α.
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Forward bootstrap prediction for parametric NLAR models
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Forward bootstrap prediction for parametric NLAR models

First, we consider the case that we can decompose G(Xt−p, ϵt) as a parametric
non-linear model and innovation1:

Xt = G(Xt−1, ϵt) = m(Xt−1, θ1) + σ(Xt−1, θ2)ϵt, (2)

where:
m(·) is the mean function which is Lipschitz continuous w.r.t. the first and second
arguments for their domain, respectively.
σ(·) is the positive and bounded variance function which is Lipschitz continuous
w.r.t. the first and second arguments for their domains, respectively.
θ1 ∈ Θ1 and θ2 ∈ Θ2, where Θ1 and Θ2 are all bounded sets in Rd.
For ϵt, it is mean zero and variance 1; fϵ(·) is continuous and everywhere positive.

We further assume that the time series is geometrically ergodic.

1To simplify notation, we consider models with order 1.
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Forward bootstrap prediction for parametric NLAR models

Under the consistency of parameter estimations, i.e., θ̂1
p
→ θ1 and θ̂2

p
→ θ2. With

additional suitable assumptions on the moments condition of ϵt. We provide some
results based on {X0, . . . , XT } ∈ ΩT , where P((X0, . . . , XT ) ∈ ΩT ) = o(1) as T → ∞.

Preliminary lemmas:
Lemma 1 (according to Theorem 2 of Franke et al. (2004)) For the bootstrap
series {X∗t }Tt=0 generated by Step 2 of Main Algorithm, it is also geometrically
ergodic.
Lemma 2 (according to Theorem 3 of Franke et al. (2004)) For the stationary
distribution of the bootstrap series, it can mimic the stationary distribution of the
original series closely:

sup
B
|Π(B) − Π∗(B)| = o(1),

which holds for all measurable sets B, where Π(B) and Π∗(B) represent
stationary distribution for real series and bootstrap series, respectively.
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Forward bootstrap prediction for parametric NLAR models

The consistency of parameter estimations can be guaranteed by applying the
Non-linear Least Square technique2. We take a two-step estimation process to find θ̂1
and θ̂2:

θ̂1 = arg min
ϑ∈Θ1

LT (ϑ) = arg min
ϑ∈Θ1

1
T

T∑
t=1

(Xt − m(Xt−1, ϑ))2

θ̂2 = arg min
ϑ∈Θ2

KT (ϑ, θ̂1) = arg min
ϑ∈Θ2

∣∣∣∣∣∣∣ 1T
T∑

t=1

Xt − m(Xt−1, θ̂1)
σ(Xt−1, ϑ)

2 − 1

∣∣∣∣∣∣∣ .
We assume that we can correctly specify the parametric non-linear model, and θ1, θ2
uniquely minimize L(ϑ) and K(ϑ, θ1).

2One advantage of applying this estimation method is that the predictive residuals can be performed
easily, i.e., we estimate models based on the available data Xi vs. {Xi−p, . . . , Xi−1} excludes the single point
at i = t to get the predictive residual ϵ̂ p

t .
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Forward bootstrap prediction for parametric NLAR models

Theorem 1 (Consistency of OP and asymptotic validity of QPI):

Let {Xt} satisfy Eq. (2). For k ≥ 1 we have:

sup
|x|≤cT

∣∣∣FX∗T+k |XT ,...,X0 (x) − FXT+k |XT (x)
∣∣∣ p
→ 0, (3)

where
X∗T+k = G(XT ; ϵ̂∗T+1, . . . , ϵ̂

∗
T+k; θ̂). This is computed by X∗T+i = m(X∗T+i−1, θ̂1)

+σ(X∗T+i−1, θ̂2)ϵ̂∗T+i iteratively for i = 1, . . . , k. Similar for XT+k.

{ϵ̂∗i }T+k
i=T+1are i.i.d. ∼ F̂ϵ .

cT is an appropriate sequence converges to infinity as T converges to infinity.
FX∗T+k |XT ,...,X0 (x) is the distribution of k-step ahead future value in the bootstrap
world, i.e., conditional on all observed data.
FXT+k |XT (x) is the distribution of k-step ahead future value in the real world.

◁
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Forward bootstrap prediction for parametric NLAR models

Theorem 2 (Estimation inference of θ̂1 and θ̂2, θ̂∗1 and θ̂∗2 ):

Based on the realization {X0, . . . , XT } ∈ ΩT , under other suitable assumptions, we
have:

√
T (̂θ1 − θ1)

d→ N(0, B−1
1 Ω1B−1

1 ) ;
√

T (̂θ2 − θ2)
d→ N(0, B−1

2 Ω2B−1
2 ). (4)

where
Ω1 = 4 · E(σ(X0, θ2)R1σ(X0, θ2)); B1 = 2 · E (∇ϕ(X0, θ1)(∇ϕ(X0, θ1))⊤

)
;

R1 = ∇ϕ(X0, θ1) ∇ϕ(X0, θ1)⊤; here ∇ is the gradient operator w.r.t. θ1.
Ω2 = 4 · E(B3R2B⊤3 ); B3 = E(∇g(X1, X0, θ2, θ1)); R2 = (g(X1, X0, θ2, θ1) − 1)2;
B2 = 2 · (E(∇g(X1, X0, θ2, θ1)) · (E(∇g(X1, X0, θ2, θ1))⊤; g(X1, X0, θ2, θ1) =(

X1−ϕ(X0,θ1)
σ(X0,θ2)

)2
; here ∇ is the gradient operator w.r.t. θ2.
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Forward bootstrap prediction for parametric NLAR models

Theorem 2 continued:

To derive the estimation inference of θ̂∗1 and θ̂∗2, we need to center the residuals to be
mean 0 and normalize its variance to 1. Then, with Lemma 1 and Lemma 2, we further
have:

√
T (̂θ∗1 − θ̂1)

d→ N(0, B−1
1 Ω1B−1

1 ) ;
√

T (̂θ∗2 − θ̂2)
d→ N(0, B−1

2 Ω2B−1
2 ). (5)

◁
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Forward bootstrap prediction for parametric NLAR models

Simulation example (Threshold model):

Xt = (0.5 · Xt−1 + 0.2 · Xt−2 + 0.1 · Xt−3)I(Xt−1 ≤ 0) + (0.8 · Xt−1)I(Xt−1 > 0) + ϵt.
ϵt ∼ N(0, 1).

(6)

Simulation setting:

We take the number of bootstrap times M = 1000. We repeat simulations N = 5000
times. We take α = 0.05.

Simulation measurement:

CVR of the k-th step ahead prediction =
1
N

N∑
n=1

IXn,k∈[Ln,k ,Un,k], for k = 1, . . . , 5.

(7)

LEN of the k-th step ahead PI =
1
N

N∑
n=1

(Un,k − Ln,k), for k = 1, . . . , 5, (8)

where [Ln,k,Un,k] and Xn,k represent k-th step ahead prediction intervals and the true
future value in the n-th replication, respectively.
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Forward bootstrap prediction for parametric NLAR models

Simulation results:

Table: The CVR and LEN of PIs for Model Eq. (6)

Threshold Model: Xt = (0.5 · Xt−1 + 0.2 · Xt−2 + 0.1 · Xt−3)I(Xt−1 ≤ 0) + (0.8 · Xt−1)I(Xt−1 > 0) + ϵt

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9420 0.9506 0.9468 0.9444 0.9372 3.88 4.68 5.11 5.40 5.58
QPI-p 0.9462 0.9512 0.9502 0.9474 0.9428 3.92 4.72 5.16 5.45 5.64
L2-PPI-f 0.9446 0.9510 0.9486 0.9470 0.9408 3.90 4.71 5.15 5.44 5.63
L2-PPI-p 0.9466 0.9542 0.9516 0.9494 0.9434 3.94 4.75 5.20 5.49 5.69
L1-PPI-f 0.9448 0.9518 0.9478 0.9468 0.9402 3.90 4.71 5.15 5.44 5.62
L1-PPI-p 0.9470 0.9544 0.9500 0.9486 0.9436 3.94 4.75 5.20 5.49 5.68
SPI 0.9446 0.9534 0.9508 0.9510 0.9454 3.90 4.71 5.16 5.46 5.65

T = 100

QPI-f 0.9270 0.9304 0.9294 0.9272 0.9250 3.81 4.57 4.98 5.23 5.40
QPI-p 0.9370 0.9412 0.9368 0.9372 0.9372 3.98 4.76 5.19 5.46 5.63
L2-PPI-f 0.9358 0.9352 0.9338 0.9314 0.9298 3.95 4.71 5.13 5.40 5.59
L2-PPI-p 0.9454 0.9454 0.9444 0.9430 0.9418 4.10 4.90 5.34 5.63 5.83
L1-PPI-f 0.9364 0.9360 0.9336 0.9310 0.9304 3.95 4.71 5.13 5.39 5.58
L1-PPI-p 0.9450 0.9456 0.9432 0.9422 0.9412 4.11 4.90 5.33 5.62 5.81
SPI 0.9446 0.9472 0.9498 0.9474 0.9478 3.90 4.71 5.16 5.46 5.65

T = 50

QPI-f 0.8980 0.9054 0.9018 0.8950 0.8926 3.66 4.47 4.87 5.14 5.38
QPI-p 0.9260 0.9314 0.9272 0.9218 0.9212 4.05 4.97 5.42 5.74 5.99
L2-PPI-f 0.9340 0.9268 0.9214 0.9164 0.9152 4.22 5.10 5.86 6.89 8.97
L2-PPI-p 0.9522 0.9478 0.9404 0.9400 0.9376 4.60 5.57 6.36 7.33 9.03
L1-PPI-f 0.9338 0.9268 0.9194 0.9144 0.9130 4.23 5.09 5.82 6.79 8.71
L1-PPI-p 0.9522 0.9482 0.9384 0.9378 0.9356 4.61 5.55 6.30 7.20 8.71
SPI 0.9494 0.9448 0.9464 0.9458 0.9462 3.90 4.71 5.16 5.46 5.65

Note: “-f” and “-p” represent fitted and predictive residuals, respectively. “L2” and “L1” represent the center of PPI is L2 and L1 OP, respectively.
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Non-parametric forward bootstrap: debiasing and pertinence
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Non-parametric forward bootstrap: debiasing and pertinence

When the parametric format of Eq. (2) is unknown, we assume that we only know the
data-generating mechanism of time series consists of two parts:

Xt = G(Xt−1, ϵt) = m(Xt−1) + σ(Xt−1)ϵt, (9)

we can consider a non-parametric approach to estimate the mean and variance parts of
Eq. (9). We focus on Local Constant estimators. Other estimators, such as Local
Linear can be deployed similarly.
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Non-parametric forward bootstrap: debiasing and pertinence

Local Constant Estimator:

m̃h(x) =
∑T

t=1 K( x−Xt−1
h )Xt∑T

t=1 K( x−Xt−1
h )

and σ̃h(x) =
∑T

t=1 K( x−Xt−1
h )(Xt − m̃h(Xt−1))2∑T
t=1 K( x−Xt−1

h )
; (10)

For simplifying notation, we use h to represent the bandwidth of kernel functions; h
may take a different value for mean and variance estimators. Due to the theoretical
and practical issues, we truncate the above naive local constant estimators as below:

m̂h(x) =


−Cm if m̃h(x) < −Cm

m̃h(x) if |m̃h(x)| ≤ Cm

Cm if m̃h(x) > Cm

; σ̂h(x) =


cσ if σ̃h(x) < cσ
σ̃h(x) if cσ ≤ σ̃h(x) ≤ Cσ
Cσ if σ̃h(x) > Cσ

, (11)

where Cm and Cσ are large enough and cσ is small enough.
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Non-parametric forward bootstrap: debiasing and pertinence

Under the assumptions of Franke et al. (2002), we can get some properties about
Local Constant estimators.

Preliminary results according to Franke et al. (2002):

sup|x|≤cT
|m̂h(x) − m(x)|

p
→ 0 and sup|x|≤cT

|σ̂h(x) − σ(x)|
p
→ 0.

supx∈R |F̂ϵ(x) − Fϵ(x)|
p
→ 0,

where
cT is a suitable sequence that converges to infinity as T converges to infinity.
h is determined based on data with optimal rate O(T−1/5).

As a result, similar to Theorem 1, we can show the consistency of OP and asymptotic
validity of QPI for this non-parametric forward bootstrap prediction.
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Non-parametric forward bootstrap: debiasing and pertinence

Debiasing strategies:

It is well known that the center of non-parametric estimation distribution revealed by
CLT is asymptotic non-zero if we take the bandwidth with the optimal rate.

Let m̂g(x) and σ̂g(x) be estimated mean and variance functions to generate bootstrap
series in the bootstrap world. If we want to mimic the non-parametric estimator
distribution by bootstrap, there are three standard approaches to handle the bias:

1 Let g = h and take a bandwidth rate satisfying hT 1/5 → 0, i.e., under-smoothing
bandwidth.

2 Keep using the optimal rate h = O(T−1/5), but take over-smoothing g, i.e., g , h
and g/h→ ∞.

3 Perform additional bias correction via estimating this term.
See Politis (2022) for discussions on 1 and 3; see Franke et al. (2002) for a reference
on 2.
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Non-parametric forward bootstrap: debiasing and pertinence

Debiasing for (multi-step-ahead) non-parametric prediction:

For the one-step-ahead prediction, it has been discussed in Pan and Politis (2016). For
analyses of the multi-step ahead case, we take the two-step ahead predictive root as
example3:

XT+2 − X̂T+2 = m(XT+1) + ϵT+2 −
1
M

M∑
i=1

(
m̂h
(
m̂h(XT ) + ϵ̂i,T+1

)
+ ϵ̂i,T+2

)
≈ m(m(XT ) + ϵT+1) + ϵT+2 −

1
M

M∑
i=1

m̂h
(
m̂h(XT ) + ϵ̂i,T+1

)
.

(12)

X∗T+2 − X̂∗T+2 = m̂g(X∗T+1) + ϵ̂∗T+2 −
1
M

M∑
i=1

(
m̂∗h
(
m̂∗h(XT ) + ϵ̂∗i,T+1

)
+ ϵ̂∗i,T+2

)
≈ m̂g(m̂g(XT ) + ϵ̂∗T+1) + ϵ̂∗T+2 −

1
M

M∑
i=1

m̂∗h
(
m̂∗h(XT ) + ϵ̂∗i,T+1

)
.

(13)

3To simplify the notation, we take σ(·) ≡ 1.
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Non-parametric forward bootstrap: debiasing and pertinence

Further simplify Eq. (12) and Eq. (13) by Taylor expansion:

XT+2 − X̂T+2 = m(m(XT )) − m̂h(m̂h(XT )) + m(1)(x̂)ϵT+1 + ϵT+2 −
1
M

M∑
i=1

m̂(1)
h ( ˆ̂xi)ϵ̂i,T+1;

X∗T+2 − X̂∗T+2 = m̂g(m̂g(XT )) − m̂∗h(m̂∗h(XT )) + m̂(1)
g (x̂∗)ϵ̂∗T+1 + ϵ̂

∗
T+2 −

1
M

M∑
i=1

m̂∗(1)
h ( ˆ̂x∗i )ϵ̂∗i,T+1.

(14)

We can think the r.h.s of Eq. (14) is made up of two components in both real and
bootstrap worlds:

The two-step ahead estimation variability component, m(m(XT )) − m̂h(m̂h(XT ))
and m̂g(m̂g(XT )) − m̂∗h(m̂∗h(XT )).
Other terms, which are related to future innovations.

For the second component, the bootstrap can mimic the real-world situation well.

29 / 40



Non-parametric forward bootstrap: debiasing and pertinence

Theorem 3 (Confidence bound for multi-step ahead estimation function):

For (X0, . . . , XT ) ∈ ΩT , by taking the bandwidth strategy 1, we can build confidence
bound for the local constant estimator at k-step by bootstrap:

sup
|x|≤cT

∣∣∣∣P (√Th
(
Mk(XT ) − M̂h,k(XT )

)
≤ x
)
−

P
(√

Th
(
M∗h,k(XT ) − M̂∗h,k(XT )

)
≤ x
)∣∣∣∣ p
→ 0, for k ≥ 1.

(15)

Above convergence result stands true for XT ∈ S , where S is a large enough interval;
Mk(XT ) can be expressed by computing XT+i = m(XT+i−1) iteratively for i = 1, . . . , k,
i.e., it has a form in below:

Mk(XT ) = m(m(· · ·m(m(XT )) · · · )). (16)

M̂h,k(XT ) can be expressed by computing XT+i = m̂h(XT+i−1) iteratively for
i = 1, . . . , k, i.e., it has a form in below:

M̂h,k(XT ) = m̂h(m̂h(· · · m̂h(m̂h(XT )) · · · )). (17)

M∗h,k(XT ) and M̂∗h,k(XT ) can be expressed similarly.
◁
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Non-parametric forward bootstrap: debiasing and pertinence

Simulation example (NLAR model with heteroscedastic errors):

Xt = sin(Xt−1) + ϵt
√

0.5 + 0.25X2
t−1, ϵt ∼ N(0, 1). (18)

Simulation setting:

We take the number of bootstrap times M = 500. We repeat simulations N = 5000
times. We take α = 0.05. We take the Gaussian kernel to build estimators.

Remark 5: Although there is no difference asymptotically, it is beneficial to apply
under-smoothing bandwidth on QPI for small samples.

Remark 6: Once we use the under-smoothing technique to cover the estimation
variability for the mean function, we can apply g = h with optimal rate to estimate the
variance function.
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Non-parametric forward bootstrap: debiasing and pertinence

Simulation results:

Model: Xt = sin(Xt−1) + ϵt
√

0.5 + 0.25X2
t−1 , ϵt ∼ N(0, 1)

CVR for each step LEN for each step
T = 200 1 2 3 4 5 1 2 3 4 5

QPI-f 0.913 0.918 0.916 0.924 0.924 3.30 3.93 4.07 4.11 4.12
QPI-p 0.935 0.936 0.933 0.941 0.940 3.62 4.29 4.46 4.49 4.51
QPI-f-u 0.904 0.934 0.935 0.943 0.944 3.34 4.25 4.50 4.55 4.57
QPI-p-u 0.926 0.949 0.951 0.958 0.955 3.65 4.62 4.89 4.95 4.97
L2-PPI-f-opv 0.909 0.938 0.937 0.948 0.946 3.51 4.38 4.60 4.65 4.67
L2-PPI-p-opv 0.932 0.952 0.951 0.961 0.959 3.87 4.80 5.03 5.08 5.10
L1-PPI-f-opv 0.912 0.939 0.937 0.949 0.946 3.53 4.38 4.59 4.64 4.66
L1-PPI-p-opv 0.933 0.951 0.950 0.960 0.960 3.88 4.79 5.02 5.07 5.08
SPI 0.948 0.948 0.940 0.950 0.946 3.37 4.11 4.32 4.38 4.40

T = 100

QPI-f 0.901 0.907 0.912 0.909 0.906 3.28 3.85 3.97 4.01 4.01
QPI-p 0.933 0.931 0.938 0.933 0.938 3.82 4.41 4.55 4.58 4.59
QPI-f-u 0.901 0.923 0.931 0.929 0.932 3.28 4.07 4.29 4.35 4.37
QPI-p-u 0.931 0.943 0.950 0.950 0.947 3.82 4.64 4.85 4.90 4.93
L2-PPI-f-opv 0.915 0.925 0.935 0.936 0.935 3.52 4.25 4.43 4.48 4.50
L2-PPI-p-opv 0.941 0.948 0.954 0.955 0.954 4.17 4.90 5.07 5.11 5.13
L1-PPI-f-opv 0.916 0.926 0.935 0.936 0.936 3.53 4.25 4.43 4.48 4.50
L1-PPI-p-opv 0.941 0.947 0.954 0.952 0.955 4.17 4.90 5.07 5.12 5.13
SPI 0.951 0.947 0.947 0.946 0.942 3.41 4.13 4.33 4.39 4.40

T = 50

QPI-f 0.844 0.874 0.884 0.883 0.888 3.09 3.68 3.83 3.87 3.89
QPI-p 0.903 0.921 0.929 0.929 0.934 4.01 4.74 4.85 4.93 4.95
QPI-f-u 0.845 0.892 0.907 0.910 0.910 3.09 3.93 4.15 4.23 4.26
QPI-p-u 0.905 0.929 0.934 0.940 0.946 4.03 4.91 5.17 5.23 5.24
L2-PPI-f-opv 0.871 0.905 0.917 0.918 0.922 3.45 4.19 4.38 4.46 4.47
L2-PPI-p-opv 0.934 0.941 0.948 0.950 0.954 4.71 5.48 5.60 5.67 5.68
L1-PPI-f-opv 0.873 0.907 0.920 0.919 0.923 3.46 4.20 4.40 4.47 4.48
L1-PPI-p-opv 0.934 0.942 0.948 0.950 0.954 4.69 5.44 5.57 5.64 5.64
SPI 0.942 0.946 0.948 0.939 0.950 3.39 4.11 4.33 4.38 4.40

Note: All PPIs with “-opv” symbol are based on applying under-smoothing and optimal bandwidths to estimate mean and variance functions, respectively; All QPIs with
“-u” symbol are based on applying under-smoothing estimators.
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Future work I

Sub-sampling or Bootstrap with DNN

Recently, Deep Neural Network (DNN) with non-smooth activation functions (e.g.,
ReLU) have been getting more and more attention. Compared to the Shallow Neural
Network (SNN) with smooth activation functions which was popular in the last
century, this type of DNN has a better empirical performance.

Related literature:
The forward-bootstrap-type method with SNN on predicting time series; see
Giordano et al. (2007) for references. (Heavy computational cost with DNN and
a large sample size due to Step 3 in the main algorithm).
Bootstrap pairs/residuals with NN in the prediction of regression context; see
Khosravi et al. (2011) for a review. (Still heavy computational for a large sample
size even due to choosing a single random subsample).
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Future work I

Scalable subsampling:

Politis (2021) proposed the idea of choosing non-random subsamples to do
estimations. This scalable subagging estimator is more computationally efficient and
can be tuned to have the same (or better) rate of convergence compared to a naive
estimator with a whole sample.

Error bound for DNN estimations:

Farrell et al. (2021) recently showed that the optimal convergence rate of
non-parametric estimation can be achieved by a specific designed deep and wide
DNN with some log(T ) terms for a class of smooth functions. However, it may not be
feasible to take such DNN in practice.

Proposal:

Applying the scalable subsampling technique, we attempt to explore the possibility of
killing two birds with one stone: (1) Improve the convergence rate for popular
fully-connected DNN; (2) Make prediction inference after building a subagging
estimator.
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Future work II

Model-free prediction with normalizing flows

Start with a regression problem, if we observe sample of pairs {Yi,Xi}ni=1, Yi ∈ R and
Xi ∈ Rd. We want to make prediction inference once we observe X f . Here, we hope
to take a model-free (non-parametric) approach to describe the conditional
distribution PY |X .

Related work in a non-parametric approach:

Wang and Politis (2021) applied the smooth conditional distribution kernel
estimator to approximate the conditional CDF F̂(y|x) : P{Y ≤ y|X = x}. Then
F̂Y |X (y) and F̂−1

Y |X (u) represent normalizing and generative approaches,
respectively.
Zhou et al. (2022) applied a deep generative approach. They define a DNN
generator G(Z,X) : Rm × Rd → R to estimate Y |X , where Z ∼ N(0, Im). They
minimize the KL divergence DKL

(
pG(Z,X),X || pY,X

)
in an adversarial training

procedure to get the generator estimator.
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Future work II

Normalizing flow:

The normalizing flow is one kind of generative model, but it is easily invertible due to
the specifically structure, e.g. coupling/auto-regressive flows. In short, the
normalizing flow is a function f : Rd → Rd. If Z ∈ Rd has a simple known pdf pZ ,
we can get the pdf of Y = f (Z):

pY (y) = pZ(z)|detJg(y)|, (19)

where g(·) is the inverse of f (·) and Jg(y) is the Jacobian matrix of g(·) by the change
of variable formula.

Proposal:

Observing that the normalizing flow coincides with the Model-free prediction idea to
some extent, instead of taking the one-way deep generative approach, we attempt to
explore a conditional normalizing flow to serve regression prediction purpose, so that
we may also be able to keep the pertinence property.
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