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Intuition

Exploring the relationship between a predictorX and a response Y is a fundamen-
tal problem in statistics and machine learning.

Classically, people assume there is a model that may explain the relationship be-

tween X and Y :

X Y
∼ f

where ∼ means that the association between X and Y is not exactly described by
f or there is a measurement error. A famous quote says “Essentially, all models are

wrong, but some are useful.”

Given a new Xf , people care about the corresponding Yf , e.g., generating figures

or texts given some inputs, i.e.,

Xf Yf =?
≈ f̂

where ≈ involves additional error from estimating f by f̂ compared to ∼.
Goal: Make predictions without restrictive model assumptions and capture the

estimation variability meanwhile.

Model-free Prediction Principle

Instead of assuming there is a model f that connects X and Y , the Model-free
prediction principle proposed by Politis (2015) relies on four steps:

1. Find an invertible transformation function Hn which transforms non-i.i.d.

samples (Y1, . . . , Yn) to i.i.d. vector (e1, . . . , en) i.i.d.∼ Fe with possible

explanatory variables (X1, . . . , Xn);
2. Solve for Yn in terms of Yn−1 := (Y1, . . . , Yn−1), Xn and en, i.e.,

Yn = hn(Yn−1, Xn, en);
3. Determine the future response Yf := hn(Yn, Xf , ef), where ef ∼ Fe is

independent with Yf , Xf and (e1, . . . , en);
4. Evaluate the whole distribution of Yf by Monte Carlo (Fe is known) or

Bootstrap (Fe is estimated).

Limit Model-free Prediction

In practice, it is generally not easy to figure out Hn and its inverse. A so-called

Limit Model-free Prediction (LMF) method can circumvent some difficulties:

1. Determine Yn in terms of Yn−1, Xn and en, i.e., Yn = gn(Yn−1, Xn, en); en ∼ Fe;

2. Same as Steps 3-4 of the Model-free Prediction Principle.

In short, the LMF prediction framework just needs the inverse of Hn.

Noise outsourcing lemma (Kallenberg, 1997):

Let X and Y be random variables with joint distribution PX,Y . Then, there is a

measurable function G : [0, 1] × X → Y such that

(X, Y ) a.s.= (X, G(X, Z)), where Z ∼ Uniform[0, 1] and Z ⊥⊥ X.

In particular, Y
a.s.= G(X, Z). In other words, the randomness in the conditional

PY |X=x is outsourced to Z through G(x, Z) as G is deterministic.

Our extension (LMF via noise outsourcing lemma):

Under our basic assumptions, there is a continuous G̃(·, ·) which maps A :=
X × Z to Y such that G̃(x, z) = G(x, z) for all (x, z) ∈ D ⊆ A; here λ(A\D) < ε
for ∀ε > 0; λ denotes the Lebesgue measure; Z could be Rp or [0, 1]p if we take
Z as N(0, Ip) or Uniform[0, 1]p, respectively, for some positive integer p. G̃ can

be taken as the inverse transformation function in LMF prediction.

Quantile Prediction Interval (QPI):

The conditional distribution of Yf given Xf = xf can be approximated by the

Monte Carlomethodwith G̃(xf , Z), so the conditional QPI ofYf can be obtained,

but it is not satisfied for finite samples in practice; see Wang and Politis (2021).

Approximate G̃ by DNN

Define

Ĥ := arg min
Hθ∈FDNN

1
n

n∑
i=1

(Yi − Hθ(Xi, Zi))2 ; (1)

where FDNN is an appropriate DNN class; we call {Zi}n
i=1 reference random vari-

ables which can be simulated from a simple distribution.

Ĥ(X, Z) is an approximation to H0(X, Z) := arg minH E (Y − H(X, Z))2
.

Intrinsically different with standard LS optimizer, H0(X, Z) can be thought as:

A projection of Y onto an extension of SX by random variable Z; SX is a closed

subspace of L2 space, which contains all functions of X ;

A D(X,Z)-measurable function; D(X,Z) is the σ-algebra generated by (X, Z).

Capture DNN Estimation Variability

Motivation: LMF prediction framework with G̃ can eliminate error in ∼. However,
additional error in ≈ due to estimation still exists since we can only have Ĥ . As a
result, the conditional Prediction Interval (PI) based on Ĥ(xf , Z) undercovers Yf .

Pertinent PI (PPI): Politis (2015) proposed the concept of pertinence to capture

the estimation variabilities based on re-sampling techniques.

In short, the fundamental idea of building PPI is approximating the predictive root

Rf by the variant R∗
f in the bootstrap world, i.e., conditional on {(Xi, Yi, Zi)}n

i=1:

R∗
f

Approximate−−−−−−−→
d

Rf ;

where,

Rf could be Yf − Ŷf,L2; Yf ∼ PY |xf
and Ŷf,L2 := E(Ĥ(xf , Z)) is the optimal L2

point prediction; we approximate it by 1
S

∑S
s=1 Ĥ(xf , Zs);

R∗
f could be Y

(b)
f − Ŷ

(b)
f,L2
; Y

(b)
f ∼ Ĥ(xf , Z) and Ŷ

(b)
f,L2

:= E(Ĥ (b)(xf , Z)) is the
optimal L2 point prediction conditional on pseudo training data generated by

Ĥ ; we approximate it by 1
S

∑S
s=1 Ĥ (b)(xf , Zs); Ĥ (b) is the re-estimation of G̃

based on the b-th pseudo training data.

Thus, an asymptotically pertinent PI with 1 − α coverage rate centered at Ŷf,L2 is:[
Ŷf,L2 + Qα/2, Ŷf,L2 + Q1−α/2

]
;

Qα/2 andQ1−α/2 are α/2 and 1−α/2 lower quantiles ofPR∗
f
, the distribution ofR∗

f . In

practice, PR∗
f
can be approximated by the empirical distribution of {Y

(b)
f − Ŷ

(b)
f,L2

}B
b=1.

Simulation

Data generating model:

Yi = X2
i,1 + exp (Xi,2 + Xi,3/3) + Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2

)
· εi;

where Xi and εi are simulated from N(0, I5) and N(0, 1).
PI candidates: Quantile PI (QPI) and PPI based on LMF prediction idea, PI-KL and

PI-WA (based on deep generative method with adversarial training; see Zhou et al.

(2023) and Liu et al. (2021)). All PIs are built with the same hyperparameters.

Evaluation criterion:

CR := P (Yf ∈ Î),

approximated by 1
T

1
K

∑K
k=1

∑T
t=1 P (Yf ∈ Î|xt

f , {(Xk
i , Y k

i )}n
i=1); xt

f is the t-th test

point; {(Xk
i , Y k

i )}n
i=1 is the k-th training set; Î represents PI; K = 200; T = 2000.

Table 1. Simulation results of CR with varying n and p for different PIs.

CR AL CR AL CR AL

p = 5 n = 200 n = 500 n = 2000

QPI 0.861(0.170) 5.487(1.054) 0.927(0.110) 6.734(1.463) 0.787(0.177) 3.621(0.855)

PPI 0.893(0.139) 6.208(1.384) 0.941(0.095) 7.258(1.808) 0.789(0.173) 3.728(0.959)

PI-KL 0.842(0.193) 5.496(0.861) 0.869(0.157) 5.434(1.218) 0.913(0.104) 5.670(2.282)

PI-WA 0.852(0.181) 5.439(0.907) 0.882(0.150) 5.970(2.030) 0.899(0.105) 5.365(1.996)

p = 10

QPI 0.928(0.129) 7.497(0.720) 0.949(0.094) 8.194(0.950) 0.855(0.157) 4.474(0.817)

PPI 0.944(0.105) 8.103(1.072) 0.961(0.076) 8.623(1.325) 0.855(0.154) 4.546(0.953)

PI-KL 0.900(0.133) 6.701(0.835) 0.925(0.119) 6.806(0.933) 0.928(0.099) 5.882(1.403)

PI-WA 0.898(0.146) 6.757(0.719) 0.933(0.116) 7.545(1.340) 0.934(0.100) 6.199(1.880)

p = 15

QPI 0.915(0.137) 7.408(0.669) 0.945(0.097) 7.430(0.949) 0.915(0.123) 5.895(0.647)

PPI 0.930(0.119) 7.760(0.936) 0.953(0.085) 7.749(1.172) 0.916(0.121) 5.971(0.807)

PI-KL 0.909(0.136) 7.427(0.817) 0.949(0.095) 8.082(1.068) 0.943(0.089) 6.556(1.491)

PI-WA 0.901(0.137) 6.797(0.687) 0.950(0.095) 7.972(1.312) 0.947(0.088) 6.778(1.541)

p = 20

QPI 0.879(0.172) 6.726(0.485) 0.959(0.085) 8.830(0.683) 0.940(0.102) 6.849(0.562)

PPI 0.893(0.154) 6.941(0.702) 0.966(0.073) 9.100(0.950) 0.942(0.097) 6.925(0.759)

PI-KL 0.923(0.126) 7.799(0.842) 0.954(0.087) 8.311(0.861) 0.946(0.093) 6.806(1.097)

PI-WA 0.910(0.140) 7.402(0.698) 0.945(0.099) 8.011(0.800) 0.946(0.092) 6.804(1.534)

p = 25

QPI 0.871(0.172) 7.020(0.287) 0.961(0.088) 9.633(0.645) 0.946(0.099) 7.296(0.475)

PPI 0.884(0.160) 7.189(0.548) 0.967(0.078) 9.881(0.938) 0.948(0.095) 7.370(0.695)

PI-KL 0.907(0.142) 7.370(0.618) 0.954(0.090) 8.670(0.813) 0.945(0.093) 6.915(1.009)

PI-WA 0.897(0.151) 7.071(0.510) 0.960(0.081) 8.514(0.942) 0.944(0.097) 7.117(1.491)

FutureWork

Explore the possibility of applying the Model-free prediction idea on other

machine learning tasks, e.g., classification;

Combine the LMF prediction idea with LLM.
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