Deep Limit Model-free Prediction

Kejin Wu¹ Dimitris N. Politis ^{1,2}

¹Department of Mathematics, University of California, San Diego²Halicioğlu Data Science Institute, University of California, San Diego

Intuition

Exploring the relationship between a predictor X and a response Y is a fundamental problem in statistics and machine learning.

Classically, people assume there is a model that **may** explain the relationship between X and Y:

$$X \xleftarrow{\sim} f$$

where \sim means that the association between X and Y is not exactly described by f or there is a measurement error. A famous quote says "Essentially, all models are wrong, but some are useful."

Given a new X_f , people care about the corresponding Y_f , e.g., generating figures or texts given some inputs, i.e.,

 $X_f \xrightarrow{\approx \hat{f}} Y_f = ?$

where \approx involves additional error from estimating f by \hat{f} compared to \sim .

Goal: Make predictions without restrictive model assumptions and capture the estimation variability meanwhile.

Capture DNN Estimation Variability

Motivation: LMF prediction framework with \tilde{G} can eliminate error in \sim . However, additional error in \approx due to estimation still exists since we can only have \hat{H} . As a result, the conditional Prediction Interval (PI) based on $\hat{H}(x_f, Z)$ undercovers Y_f .

Pertinent PI (PPI): Politis (2015) proposed the concept of pertinence to capture the estimation variabilities based on re-sampling techniques.

In short, the fundamental idea of building PPI is approximating the predictive root R_f by the variant R_f^* in the bootstrap world, i.e., conditional on $\{(X_i, Y_i, Z_i)\}_{i=1}^n$:

$$R_f^* \xrightarrow[d]{Approximate} R_f;$$

where,

- R_f could be $Y_f \widehat{Y}_{f,L_2}$; $Y_f \sim P_{Y|x_f}$ and $\widehat{Y}_{f,L_2} := \mathbb{E}(\widehat{H}(x_f, Z))$ is the optimal L_2 point prediction; we approximate it by $\frac{1}{S} \sum_{s=1}^{S} \widehat{H}(x_f, Z_s)$;
- R_f^* could be $Y_f^{(b)} \widehat{Y}_{f,L_2}^{(b)}$; $Y_f^{(b)} \sim \widehat{H}(x_f, Z)$ and $\widehat{Y}_{f,L_2}^{(b)} := \mathbb{E}(\widehat{H}^{(b)}(x_f, Z))$ is the optimal L_2 point prediction conditional on pseudo training data generated by \widehat{H} ; we approximate it by $\frac{1}{S} \sum_{s=1}^{S} \widehat{H}^{(b)}(x_f, Z_s)$; $\widehat{H}^{(b)}$ is the re-estimation of \widetilde{G} based on the *b*-th pseudo training data.

Thus, an asymptotically pertinent PI with $1 - \alpha$ coverage rate centered at \widehat{Y}_{f,L_2} is:

$$\hat{Y}_{fI} + Q_{I/2} \hat{Y}_{fI} + Q_{1/2}$$

Model-free Prediction Principle

Instead of assuming there is a model f that connects X and Y, the Model-free prediction principle proposed by Politis (2015) relies on four steps:

- 1. Find an invertible transformation function H_n which transforms non-*i.i.d.* samples (Y_1, \ldots, Y_n) to *i.i.d.* vector $(e_1, \ldots, e_n) \stackrel{i.i.d.}{\sim} F_e$ with possible explanatory variables (X_1, \ldots, X_n) ;
- 2. Solve for Y_n in terms of $Y_{n-1} := (Y_1, ..., Y_{n-1})$, X_n and e_n , i.e., $Y_n = h_n(Y_{n-1}, X_n, e_n)$;
- 3. Determine the future response $Y_f := h_n(Y_n, X_f, e_f)$, where $e_f \sim F_e$ is independent with Y_f , X_f and (e_1, \ldots, e_n) ;
- 4. Evaluate the whole distribution of Y_f by Monte Carlo (F_e is known) or Bootstrap (F_e is estimated).

Limit Model-free Prediction

In practice, it is generally not easy to figure out H_n and its inverse. A so-called Limit Model-free Prediction (LMF) method can circumvent some difficulties:

1. Determine Y_n in terms of Y_{n-1} , X_n and e_n , i.e., $Y_n = g_n(Y_{n-1}, X_n, e_n)$; $e_n \sim F_e$; 2. Same as Steps 3-4 of the Model-free Prediction Principle.

In short, the LMF prediction framework just needs the inverse of H_n .

Noise outsourcing lemma (Kallenberg, 1997):

Let X and Y be random variables with joint distribution $P_{X,Y}$. Then, there is a measurable function $G: [0,1] \times \mathcal{X} \to \mathcal{Y}$ such that

 $(X,Y) \stackrel{a.s.}{=} (X,G(X,Z)), \text{ where } Z \sim \text{Uniform}[0,1] \text{ and } Z \perp\!\!\!\perp X.$

In particular, $Y \stackrel{a.s.}{=} G(X, Z)$. In other words, the randomness in the conditional $P_{Y|X=x}$ is outsourced to Z through G(x, Z) as G is deterministic.

Our extension (LMF via noise outsourcing lemma):

Under our basic assumptions, there is a continuous $\widetilde{G}(\cdot, \cdot)$ which maps $A := \mathcal{X} \times \mathcal{Z}$ to \mathcal{Y} such that $\widetilde{G}(x, z) = G(x, z)$ for all $(x, z) \in D \subseteq A$; here $\lambda(A \setminus D) < \epsilon$ for $\forall \epsilon > 0$; λ denotes the Lebesgue measure; \mathcal{Z} could be \mathbb{R}^p or $[0, 1]^p$ if we take Z as $N(0, I_p)$ or Uniform $[0, 1]^p$, respectively, for some positive integer p. \widetilde{G} can be taken as the inverse transformation function in LMF prediction.

 $I f, L_2 + \Im \alpha/2, I f, L_2 + \Im I - \alpha/2$,

 $Q_{\alpha/2}$ and $Q_{1-\alpha/2}$ are $\alpha/2$ and $1-\alpha/2$ lower quantiles of $P_{R_f^*}$, the distribution of R_f^* . In practice, $P_{R_f^*}$ can be approximated by the empirical distribution of $\{Y_f^{(b)} - \hat{Y}_{f,L_2}^{(b)}\}_{b=1}^B$.

Simulation

Data generating model:

$$Y_{i} = X_{i,1}^{2} + \exp\left(X_{i,2} + X_{i,3}/3\right) + X_{i,4} - X_{i,5} + \left(0.5 + X_{i,2}^{2}/2 + X_{i,5}^{2}/2\right) \cdot \varepsilon_{i};$$

where X_i and ε_i are simulated from $N(0, I_5)$ and N(0, 1).

PI candidates: Quantile PI (QPI) and PPI based on LMF prediction idea, PI-KL and PI-WA (based on deep generative method with adversarial training; see Zhou et al. (2023) and Liu et al. (2021)). All PIs are built with the same hyperparameters.

Evaluation criterion:

$$\mathsf{CR} := P(Y_f \in \widehat{\mathcal{I}}),$$

approximated by $\frac{1}{T}\frac{1}{K}\sum_{k=1}^{K}\sum_{t=1}^{T}P(Y_f \in \widehat{\mathcal{I}}|x_f^t, \{(X_i^k, Y_i^k)\}_{i=1}^n); x_f^t$ is the *t*-th test point; $\{(X_i^k, Y_i^k)\}_{i=1}^n$ is the *k*-th training set; $\widehat{\mathcal{I}}$ represents PI; K = 200; T = 2000.

Table 1. Simulation results of CR with varying n and p for different PIs.

	CR	AL	CR	AL	CR	AL
p = 5	n = 200		n = 500		n = 2000	
QPI	0.861(0.170)	5.487(1.054)	0.927(0.110)	6.734(1.463)	0.787(0.177)	3.621(0.855)
PPI	0.893(0.139)	6.208(1.384)	0.941(0.095)	7.258(1.808)	0.789(0.173)	3.728(0.959)
PI-KL	0.842(0.193)	5.496(0.861)	0.869(0.157)	5.434(1.218)	0.913(0.104)	5.670(2.282)
PI-WA	0.852(0.181)	5.439(0.907)	0.882(0.150)	5.970(2.030)	0.899(0.105)	5.365(1.996)
p = 10						
QPI	0.928(0.129)	7.497(0.720)	0.949(0.094)	8.194(0.950)	0.855(0.157)	4.474(0.817)
PPI	0.944(0.105)	8.103(1.072)	0.961(0.076)	8.623(1.325)	0.855(0.154)	4.546(0.953)
PI-KL	0.900(0.133)	6.701(0.835)	0.925(0.119)	6.806(0.933)	0.928(0.099)	5.882(1.403)
PI-WA	0.898(0.146)	6.757(0.719)	0.933(0.116)	7.545(1.340)	0.934(0.100)	6.199(1.880)
p = 15						
QPI	0.915(0.137)	7.408(0.669)	0.945(0.097)	7.430(0.949)	0.915(0.123)	5.895(0.647)
PPI	0.930(0.119)	7.760(0.936)	0.953(0.085)	7.749(1.172)	0.916(0.121)	5.971(0.807)
PI-KL	0.909(0.136)	7.427(0.817)	0.949(0.095)	8.082(1.068)	0.943(0.089)	6.556(1.491)
	0001(0107)			7070(1010)	0017(000)	(770(1 E 11))

Quantile Prediction Interval (QPI):

The conditional distribution of Y_f given $X_f = x_f$ can be approximated by the Monte Carlo method with $\tilde{G}(x_f, Z)$, so the conditional QPI of Y_f can be obtained, but it is not satisfied for finite samples in practice; see Wang and Politis (2021).

Approximate \widetilde{G} by DNN

Define

$$\widehat{H} := \arg\min_{H_{\theta} \in \mathcal{F}_{\text{DNN}}} \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - H_{\theta}(X_i, Z_i) \right)^2;$$
(1)

where \mathcal{F}_{DNN} is an appropriate DNN class; we call $\{Z_i\}_{i=1}^n$ reference random variables which can be simulated from a simple distribution.

 $\widehat{H}(X,Z)$ is an approximation to $H_0(X,Z) := \arg \min_H \mathbb{E} \left(Y - H(X,Z)\right)^2$.

Intrinsically different with standard LS optimizer, $H_0(X, Z)$ can be thought as:

- A projection of Y onto an extension of S_X by random variable Z; S_X is a closed subspace of L^2 space, which contains all functions of X;
- A $\mathcal{D}_{(X,Z)}$ -measurable function; $\mathcal{D}_{(X,Z)}$ is the σ -algebra generated by (X,Z).

PI-WA 0.901(0.137) 6.797(0.687) 0.950(0.095) 7.972(1.312) 0.947(0.088) 6.778(1.541) p = 200.879(0.172) 6.726(0.485) 0.959(0.085) 8.830(0.683) 0.940(0.102) 6.849(0.562) QPI 0.893(0.154) 6.941(0.702) 0.966(0.073) 9.100(0.950) 0.942(0.097) 6.925(0.759) PPI 0.923(0.126) 7.799(0.842) 0.954(0.087) 8.311(0.861) 0.946(0.093) 6.806(1.097) PI-KL PI-WA 0.910(0.140) 7.402(0.698) 0.945(0.099) 8.011(0.800) 0.946(0.092) 6.804(1.534) p = 25 0.871(0.172) 7.020(0.287) 0.961(0.088) 9.633(0.645) 0.946(0.099) 7.296(0.475) QPI PPI 0.884(0.160) 7.189(0.548) 0.967(0.078) 9.881(0.938) **0.948(0.095)** 7.370(0.695) 0.907(0.142) 7.370(0.618) 0.954(0.090) 8.670(0.813) 0.945(0.093) 6.915(1.009) PI-KL PI-WA 0.897(0.151) 7.071(0.510) 0.960(0.081) 8.514(0.942) 0.944(0.097) 7.117(1.491)

Future Work

- Explore the possibility of applying the Model-free prediction idea on other machine learning tasks, e.g., classification;
- Combine the LMF prediction idea with LLM.

References

Kallenberg, O. (1997). Foundations of modern probability Second Edition. Springer.

Liu, S., Zhou, X., Jiao, Y., and Huang, J. (2021). Wasserstein generative learning of conditional distribution. *arXiv preprint arXiv:2112.10039*.

Politis, D. N. (2015). Model-free prediction in regression: A transformation-based approach to inference. Springer.

- Wang, Y. and Politis, D. N. (2021). Model-free bootstrap and conformal prediction in regression: Conditionality, conjecture testing, and pertinent prediction intervals. *arXiv preprint arXiv:2109.12156*.
- Zhou, X., Jiao, Y., Liu, J., and Huang, J. (2023). A deep generative approach to conditional sampling. *Journal of the American Statistical Association*, 118(543):1837–1848.

