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Research Statement

Kejin Wu, Assistant Professor
Department of Mathematics and Statistics, Loyola University Chicago

My past and ongoing research focuses on two major topics: the prediction inference of dependent or
independent data under various scenarios, and the uncertainty quantification of diverse estimators
using bootstrap or subsampling techniques. With the recent information explosion, developing
statistical inference in a computationally feasible way has also become one of my research interests.
My goal is to develop systematic approaches to provide meaningful estimation/prediction inference
of various statistical tasks with user-chosen methods while imposing minimal assumptions.

Research Overview

The diagram below summarizes the key points of my research:
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Figure 1: Research diagram.

In Figure 1, the two solid arrow lines stand for the direct application of data to do estimation
and prediction where the estimation uncertainty and predictability should be considered, respec-
tively. Dashed arrow lines indicate other complementary factors that require attention, namely
the computability for both prediction and estimation processes and pertinence for the prediction
inference.

The data (Uy,...,U,) can represent independent or dependent data. For example, (Uy,...,U,)
can be time series data indexed by discrete time points from 1 to n. Alternatively, U; can represent

the independent data pair (Y;, X;) in the regression setting for ¢ = 1,...,n. For the estimation
tasks, the estimator (U, . .., Uy,) based on data approximates the quantity #( P) which relies on the
underlying distribution P. Meanwhile, the estimation accuracy of 6(Uy,...,U,) can be quantified

by Confidence Interval (CI). This perspective is related to the concept of estimation uncertainty.
In our work IV, we investigated the estimation inference of the trained DNN, denoted by fDNN, as
a whole term in the regression context. More specifically, we constructed the CI with fDNN(x) at
any point of x in the domain of X with a subsampling technique; we also approximated the bias
order of fDNN (I)



In contrast, the prediction ﬁn+1 of the future occupies another important application in the
real world. Classically, people rely on some model assumption to depict the data at hand, and then
make predictions based on the estimated model variant. Following this traditional approach, we
developed the methodology to make multi-step ahead point predictions and asymptotically valid
Prediction Interval (PI) for non-linear time series in work I. Asymptotic validity means the coverage
rate of PI equals the nominal confidence level asymptotically. However, as the famous saying goes,
“all models are wrong, but some are useful”. I am also interested in exploring the predictability
of the future without any restricted model assumption, which is known as Model-free prediction.
In work II, we put forward several Model-free/Model-based methods to forecast the volatility of
stock returns. The goal is to find an invertible transformation function that maps {U;}}_; to
an i.i.d. sequence {W;}}, so that the prediction of U, can be derived from the straightforward
prediction of W, 11. Also, we explored the predictability of the purely MF approach in the regression
context with the help of DNN in work III. It turns out that the future distribution of Y,, 11 can be
mimicked by a DNN function fpyy which takes X, and auxiliary variable Z, 1 as input, i.e.,
Yot1 = fonn (Xnt1s Znt1)-

The prediction and estimation stand for their distinct interests separately, but they should be
considered simultaneously, especially when the prediction inference is desired with finite samples.
In essence, the error involved in prediction comes from two sources: one is the inherent randomness
from the future value, and the other is all estimation errors generated in the prediction process.
An effective PI needs to capture both variabilities even with finite samples, a property known
as pertinence. Guided by this spirit, we designed specific algorithms to capture the estimation
variabilities for predictions with time series and regression data in work I and III.

In addition to the methodologies of making estimation and prediction inferences, another crucial
factor that should be kept in mind is the computability, especially for the statistical analysis process
fueled by big data or complicated estimators. Inspired by the divide-and-conquer approach, which
was originally applied in the algorithm to reduce the computational complexity, we demonstrated
that Deep Neural Networks (DNN) can be trained more quickly and accurately in work IV with
a scalable subsampling framework proposed recently. Extensions of this approach to speed up the
running time of other complex estimators are also possible.

Research Summary
In this section, I will provide a detailed introduction to my past work I to IV.
I Model-based prediction of a special type of time series

In the domain of univariate time series analysis, single- or multi-step ahead predictions are crucial
for forecasting crop yields, stock prices, traffic volume, etc. Conventionally, people usually take a
Model-based (MB) approach, where some specific underlying model is assumed to depict the data
and then predictions are made based on this model. A flexible choice is the Autoregressive (AR)
model, expressed as Uy, = f(Up—1)+9(Up—1)-€n; Up—1 represents the vector (Up—1,...,Up—p) € RP;
f(-) and g(-) can be any appropriate functions as long as some mixing or weak dependence property
of time series is satisfied; €, is the 7.i.d. innovation term of the model. For Linear AR (LAR) models,
the k-step ahead Ly optimal point prediction (with respect to Lo risk) can be obtained by iterating
the one-step ahead predictor with a known or estimated model; k € Z*. However, the LAR model
may not be enough to analyze complicated data in the real world, necessitating the use of Non-linear
AR (NLAR) models. Unfortunately, the optimal multi-step ahead prediction (in terms of Ly or
L, risk) of NLAR can not be achieved through the iterative procedure used for LAR models. This
challenge also extends to constructing PI.
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Our works [WP24a] and [PW23] provide two model options: (a) f(-) and g(-) are assumed
to have a known non-linear form, but the corresponding parameters are unknown; (b) f(-) and
g(-) are assumed to possess some smoothness property and estimated by non-parametric methods.
Regardless of which option is applied, we propose a general algorithm to solve the forecasting
difficulty with the NLAR model. The key step involves simulating pseudo values of innovation
(€115 €n4y) from the distribution P, if it is known, or bootstrapping (€, ,...,€; ;) from
the empirical distribution of the residuals ]36. Then, a pseudo value U}, can be attained by
iterating the model equation based on U,, and {€], +i}f:1 or {€ +z‘}§:1' By repeating the simulation
or the bootstrap, the conditional distribution of future variable Fy; |, can be estimated by the

empirical distribution of {Ué?k}bB:l, denoted as ﬁU*+k|Un; each Uffﬁk is a pseudo value of U,, 1. As

n — oo and B — oo, we show that the mean and median of ﬁU*+k|Un are consistent with Ly and
L; optimal point prediction of U, 4, respectively. Also, the naive quantile PI based on ﬁU*+k|Un
is asymptotically valid. Moreover, when estimation error is involved, e.g., P. and the model are

replaced by their corresponding estimators, we build the Pertinent PI (PPI) by leveraging the
following uniform consistency result under standard assumptions:

~

P (Uit = Oy S 0lUn, o Unpin) = B (Unir = D S alUns o Unpin )| B 03

sup
|z|<cn

P (+]-) is the conditional probability; ¢, — oo in an appropriate rate as n — oo; (7;: 4 and ﬁnJrk rep-
resent meaningful point predictions in the bootstrap- and real-world, respectively, e.g., the optimal
Lo point prediction. The PPI is centered around Un+k and its two endpoints are determined by the
quantile of the conditional distribution of U}, — ﬁ; 45 In other words, the estimation variabilities
embedded in the prediction can be captured by approximating the conditional distribution of the

predictive root U,y — U,+k as a whole term by the bootstrap.
II Model-free/Model-based forecasting of volatility in financial returns

To alleviate the model limitation in the prediction process, the ultimate goal is to develop a
Model-free (MF) prediction framework without any restricted model assumptions. Remarkably,
it is worth exploring the performance of the intermediate stage between MB and MF approaches,
namely the Model-free/Model-based (MFMB) method. For instance, in forecasting the volatility
of univariate financial returns, the existing MFMB method builds on the prior Autoregressive
Conditional Heteroskedasticity (ARCH) model as follows:

P
Up = Wi(a + ZaiUf_i)l/Z; fort=p+1,...,n;
i=1
a>0anda; >0foralli=1,...,p; W; ~i.i.d. N(0,1); series {U;} represents financial log-returns.
Subsequently, a transformation function can be modified from the ARCH model to connect two
probability spaces, i.e.,

p
W, = U/ (as?_ | 4+ boUZ + ZbiUf_i)l/Z s fort=p+4+1,...,n
=1

{W}} should be understood as the transformed vector here; « is a fixed, scale-invariant constant;
s7_, is an estimator of the variance of {Uy,...,U;_1}; {b;}}_, is no longer the coefficient vector
of a model, but instead has an exponentially decayed form, i.e., by = ¢, b; = e, for all
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1<i<p d= ﬁ Considering the inverse form the transformation function, we derive
3=0

the equation: Up41 = \/WQJFI(O[S% 2 biU2 )/ (1= boW2 ). Tdeally, if {Wi}7, arei.i.d.

n

with a simple distribution, we can execute bootstrap on {Wt}?:p 11 to generate pseudo values of
Up+1. Subsequently, the point prediction and PI can be decided based on the resulting empirical
distribution. Similarly, k-step ahead prediction inference can be conducted.

In short, rather than estimating a model, the MFMB method aims to find an optimal transfor-
mation such that {W;}{_ ., are as close to i.i.d. as possible. Moreover, the transformation function
depends on only two unknown parameters « and ¢, which offers significant advantages when the
available sample is short compared to the demand of estimating p + 1 coefficients in the standard
ARCH model. Our works [WK21], [WK23] and [WKG23] evaluate the current MFMB method for
long-term time aggregated forecasting and explore other transformation forms based on GARCH
and GARCHX models.

IIT Model-free prediction of regression based on DNN

An MF method neither makes restricted model assumptions nor arises from any prior model. Take
the regression task as an example, our purpose is the prediction inference of Yy € R given a new
independent variable X, € R? with only assumptions about the joint distribution of Pxy. To
realize the essence of MF prediction, the objective is to find invertible transformation functions
Hx, that transform each Y; to W; conditional on X; for ¢ = 1,...,n; W; should have a simple
distribution Py conditional on X;. In other words, the collection of functions {Hx,}? ; connects
two equivalent probability spaces: one is the space of {(X;,Y;)}" ; and the other is the space of
{(Xi, Z;)}?1; here X; and Z; are mutually independent.

We consider the MF prediction with DNN estimators in [WP24b]. This combination kills two
birds with one stone: (1) According to folk wisdom and empirical/theoretical evidence, DNN suffer
less from the curse of dimensionality compared to the kernel estimators used in the current MF
method; (2) Although DNN is an unstable estimator that may vary widely across different samples,
the MF prediction gives a method to capture the estimation variability of DNN when predictions
are needed. Consequently, our work develops a so-called Deep Limit Model-free (DLMF) prediction
method. Moreover, we establish the theoretical foundation of DLMF starting from a concept known
as the noise-outsourcing lemma. Under mild conditions, it turns out that there is a continuous
E(,-) : & x 2 = Y such that =(z,2) = Ho(z,2) for all (z,2) € D C A; here A\(A\D) < € for
Ve > 0; A is space X x Z; X denotes the Lebesgue measure; X', Z and ) are domains of X, Z and
Y, respectively; Hy is a measurable function such that Y == H (X,Z). Z could be RP or [0, 1]P if
we take Z as N(0, I,) or Uniform[0, 1]P, respectively, for some positive integer p. Therefore, Z(-,-)
can be a candidate for the transformation function. By the universal approximation property of
DNN, Z(+,) can be estimated arbitrarily well as long as the sample size is large. Likewise, PPI can
be considered in conjunction with the DLMF method. As revealed by simulation and empirical
studies, the PPI of DLMF outperforms the PI generated by other deep generative counterparts.

IV  Scalable subsampling inference of DNN

The computational challenges in statistical analysis have raised growing concerns as sample sizes
continue to increase. Computationally intensive methods, such as bootstrap, place a heavy load on
the CPU when dealing with large datasets because the estimation processes are repeated on many
resamples, each as large as the original sample. Even with the subagging method, in which the
estimation is performed with all b-size subsamples from an n-size dataset, the computational cost
remains substantial when n and b are large since choosing a single random subsample needs O(b)



time and space which corresponds to optimal time and space complexity for this task.

Recently, a scalable subsampling (SS) technique was proposed by [Pol24]. SS involves creating
q = [(n —b)/h] + 1 non-stochastic subsamples from the dataset {Ui,...,Uy}; |-] denotes the
floor function; U; := (X;,Y;); X; € R4Y € R. These subsamples, denoted as By, ..., By, are
defined by B; = {U(j,l)hﬂ, R U(j,l)h%}; the parameter h controls the amount of overlap
(or separation) between B; and Bjy1; the subsample size b and the overlap h are functions of
n, but these dependencies will not be explicitly denoted. For a given estimator, if its bias is
comparatively negligible to its standard deviation, the overall mean square error bound can be
improved by applying the SS technique, i.e., the scalable subsampling estimator being the average
of estimators built by all subsamples. Moreover, if O(n”) number of operations are required to
perform an estimation with the full sample, only O(nb”~!) number of operations are needed for
estimations on all subsamples when b = h. When 7 is large, such as in the implementation of
LASSO regression where d increases with n, SS can offer notable computational savings.

Under mild conditions, our work [WP24c] explores the estimation inference of the DNN esti-
mator in the regression context. First, we show tklat the error bound for a scalable subsampling

estimator fpyy satisfies || fpnn — inQ(X) < pitera L(n) with high probability; £(n) is a slowly
varying function involving a constant and all log(n) terms; £ > 0 is a real number that measures
the smoothness of the underlying true regression function; A is assumed to be larger than &%.
This error bound is superior to existing general and attainable variants when no assumption about
the model structure or intrinsic dimension of data is made. Secondly, via a scaling-down estima-
tion technique, we attempt to figure out the bias order of fpyy by finding a rate 7 such that
E(fpnx(z) — f(z)) = O(n~7/?). Thirdly, several algorithms are set up to construct the pointwise
CI. In addition, the PI based on the SS estimator is discussed.

Future Research Agenda

So far, my research work has been motivated by thoughts of estimation uncertainty, predictability
and computability. In the same manner, there are ample potential research extensions. I summarize
some of them below. Beyond these individual projects, I am open to collaborating with other
researchers in areas where my expertise can contribute meaningfully.

I Model-free prediction of dependent data

A direct extension of current work is applying the MF prediction philosophy to dependent data. For
example, with time series data, it is possible to model it by a general equation: U,, = G(U,—1, €y).
Instead of thinking G(-,-) as a model to explain the underlying time series generating process, it is
more appropriate to view it as a generator that maps U,,—1 and ¢, together to U,. This viewpoint
parallels the transformation function used in the MFMB prediction, but no prior model is used.
As a result, this prediction approach is not constrained by any model assumption. Ideally, it could
encompass a broad range of true underlying models if they exist.

IT Volatility forecast sparked by other transformation functions

A general consensus in the volatility forecasting literature is that the realized variance is a more ac-
curate measure of volatility than squared returns. Typically, the realized variance can be computed
from high-frequency auxiliary information, such as intraday transaction prices, bid/ask quotes, and
trading volume. Motivated by this agreement, the realized variance can enhance existing volatility
models resulting in parallel GARCH and realized GARCH models. In addition, the INGARCH
model has wide applications in areas involving count time series such as epidemiology, finance, and
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sports. It is interesting to see the performance of the MFMB method sparked by these GARCH
variants.

IIT Estimation uncertainty in other statistical tasks

DNN has also been applied to other statistical tasks. For example, a DNN that takes quantile
values and independent variables as inputs can return the value of dependent variables, enabling
the estimation of a quantile process. Additionally, a DNN can serve as an estimator for the condi-
tional treatment effects in the field of causal inference. Therefore, it is appealing to quantify the
estimation uncertainties within these problems by scalable subsampling technique. We anticipate a
decrease in the computational aspect and an improvement in the estimation accuracy. Besides, the
quantification of the causal structure uncertainty of time series can be another interesting topic.

IV Calibration prediction interval with DNN

Apart from capturing the estimation uncertainties using bootstrap/subsampling, a calibration ap-
proach based on DNN can be operated to correct the coverage level of PI. The main idea is that
the conditional CDF values at a grid of points spanned within a user-determined region can be
estimated by DNNs. Then, the PI for new dependent variables can be determined in a calibration
manner based on these grid points. It is well known that it is impossible to make a PI with a finite
length that guarantees at least 1 — o coverage for Y conditional on X; = xf for any distribution
of Pxy and all zy € N(P), which is the so-called non-atoms. With some compromises on the
estimation of DNN, we make an effort to show that it is possible to build a calibration PI that
guarantees at least 1 —a converge rate even for finite samples when some specific distribution Py y
is assumed.

Mentoring Plan

I firmly believe that every student possesses innate talent and potential. As a faculty member,
I will design research plans that ignite students curiosity and help them build confidence step
by step. My research spans both theoretical and empirical areas, including forecasting volatility
of financial series, time series analysis, the theoretical foundations of model-free prediction, and
the analysis of various subsampling estimators. For undergraduate students, application-based
projects can broaden their understanding of statistics and trigger their interest in the field. For
graduate students, I will guide them through theoretical projects that enhance their research skills.
Whether mentoring undergraduates or graduate students, I am committed to providing the support
and guidance they need to solve problems independently. Additionally, I will actively mentor and
advise students from underrepresented groups.
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