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Motivation

In the statistical view, there are two important factors participators need to con-

sider when large models, e.g., DNN, are applied in practice:

The estimation uncertainty: The estimation error rate of large models is

unknown or in a sub-optimal rate;

The computational burden of training large models: Training a large model

with a huge sample size requires heavy computational resources.

We explore the possibility of killing two birds with one stone: (1) Improve the

estimation error bound of large models; (2) Decrease the training time.

Intuition

Variance reduction: To improve the convergence rate of an estimator, we can

try to decrease its variance if its bias is acceptable. This is inspired by bagging

method of Breiman (1996).

Build estimators on subsamples: To relieve the computational burden, we can

repeat the estimation with subsamples if the computation with the whole

sample is infeasible. This approach shares a general divide-and-conquer idea

originally proposed by Cormen et al. (1989).

Example

Suppose we need O(nϕ) operations to train one large model denoted by f̂n. If

we consider q = O(n/b) number of estimations f̂b,i on the i-th subsample with

size b for i = 1, . . . , q, we can take f b,n,SS := 1
q

∑q
i=1 f̂b,i to approximate f̂n.

Training time of f b,n,SS:

Only

O
(
nbϕ−1) (1)

operations are needed. For a DNN, the total number of operations to train a

DNN is O(n · W · E); here E represents the number of epochs and W is the

number of parameters. If we take b = nβ (0 < β < 1), the ratio of number of

operations (1) over O(nϕ) is
n−(ϕ−1)(1−β),

the larger model, the larger ϕ and the more computational saving.

Variance of f b,n,SS:

If all subsamples are non-overlapping,

Var
(
f b,n,SS

)
= 1

q
Var

(
f̂b,1

)
, (2)

assuming Var
(

f̂b,i

)
are equal across i; q = bn/bc. When E

(
f b,n,SS

)
= E

(
f̂b,i

)
,

result (2) implies the variance deduction, so the decrease of Mean Square Error.

Scalable Subsampling

Scalable subsampling is one type of non-stochastic subsampling technique pro-

posed by Politis (2024).

Suppose that we observe the sample {U1, . . . , Un}; Ui represents (Xi, Yi) ∈ Rd ×R
which are predictors and response variables, respectively.

The scalable subsampling relies on q = b(n − b)/hc + 1 number of subsamples

B1, . . . , Bq where Bj = {U(j−1)h+1, . . . , U(j−1)h+b}; h controls the amount of overlap

(or separation) between Bj and Bj+1.

Tuning b and h can make scalable subsampling samples have different properties:

if h = 1, the overlap is the maximum possible;

if h = 0.2b, there is 80% overlap between Bj and Bj+1;

if h = b, there is no overlap between Bj and Bj+1;

if h = 1.2b, there is a block of about 0.2b data points that separates blocks.

Feasible Assumption

A crucial condition is that the bias of the large model estimator is relatively negli-

gible compared to its variance. This is possible from several perspectives:

The double-descent of the risk exists for over-parameterized estimator

revealed by Belkin et al. (2019);

A deeper DNN may possess a lower bias confirmed by Yang et al. (2020) with

ResNet on some image datasets;

The L∞ norm of a DNN on estimating a function f can be uniformly O(W −2ξ/d)
proved by Yarotsky and Zhevnerchuk (2020). ξ is the smoothness measure of f .

MSE Bound of DNNwith Scalable Subsampling

Take the large model f̂n as a fully connected feedforward DNN with ReLU acti-

vation functions. Assume:

E(f̂n(x) − f (x)) = O(n−Λ/2)
uniformly for all x in its domain X and some constant Λ > ξ

ξ+d.

Theorem: Under other appropriate conditions, let b = h = nβ; β = 1
1+Λ− ξ

ξ+d

.

Then, with probability at least (1 − exp(−n
d

ξ+d log6 n))q:∥∥f b,n,SS − f
∥∥2

L2(X) ≤ n
−Λ

Λ+ d
ξ+d L(n); (3)

where L(n) is a slowly varying function involving a constant and all log(n) terms.

Remark: The order of MSE in Eq. (3) is larger than the optimal and practically

achievable MSE order without applying the scalable subsampling technique.

Simulation with DNN

To perform simulations, we consider models:

Model-1: Yi = X2
i,1 + sin(Xi,2 + Xi,3) + εi, where Xi ∼ N(0, I3); εi ∼ N(0, 1);

Model-2: Yi = X2
i,1 + sin(Xi,2 + Xi,3) + exp(−|Xi,4 + Xi,5|) + εi, where

Xi ∼ N(0, I5); εi ∼ N(0, 1).

To be consistent with folk wisdom, we build f̂b,i with a relatively large depth to

decrease the bias but also guarantee that the DNN estimator is in the under-

parameterized region. We also consider other 5 DNN estimators trained with the

whole sample:

(1) A DNN possesses the same depth and width as f̂b,i, namely “S-DNN”;

(2) A DNN possesses the same depth as f̂b,i, but a larger width so that its size is

close to the sample size, namely “DNN-deep-1”;

(3) A DNN possesses the same depth as f̂b,i, but a larger width so that its size is

close to half of the sample size, namely “DNN-deep-2”;

(4) A DNN possesses only one hidden layer, but a larger width so that its size is

close to the sample size, namely “DNN-wide-1”;

(5) A DNN possesses only one hidden layer, but a larger width so that its size is

close to half of the sample size, namely “DNN-wide-2”.

Table 1. Average MSE/MSPE and Training Time of different DNN models over 200 replications.

Estimator SS-DNN S-DNN DNN-deep-1 DNN-deep-2 DNN-wide-1 DNN-wide-2

Model-1, n = 104

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]

MSE 0.0296 0.0536 0.0533 0.0522 0.0426 0.0431

MSPE 0.0310 0.0564 0.0572 0.0570 0.0453 0.0449

Training Time (secs) 353 379 561 468 483 363

Model-2, n = 104

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]

MSE 0.0757 0.0830 0.1076 0.0980 0.0729 0.0728

MSPE 0.0790 0.0875 0.1114 0.1045 0.0754 0.0749

Training Time (secs) 359 376 560 471 551 394

Model-2, n = 2 · 104

Width [20,20,20] [20,20,20] [95,95,95] [65,65,65] [2800] [1400]

MSE 0.0490 0.0653 0.0686 0.0675 0.0635 0.0635

MSPE 0.0502 0.0670 0.0692 0.0689 0.0623 0.0626

Training Time (secs) 748 775 1684 1198 1549 998

Empirical MSE:
1
n

n∑
i=1

(f̃ (xi) − f (xi))2 ; Empirical MSPE:
1
N

N∑
i=1

(f̃ (x0,i) − f (x0,i))2;

f̃ represents different estimators; f is the true regression function; {xi, yi}n
i=1 are

observations of training data {Xi, Yi}n
i=1; {x0,i, y0,i}N

i=1 are test data; N = 2 · 105.

FutureWork

The estimation of exactly non-asymptotic bias and variance orders;

The training of LLM and other large models with the scalable subsampling idea.
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