
Computer-intensive Estimation and Prediction for Time Series and
Deep Neural Networks

Defense Talk

Kejin Wu
(Advised by Prof. Dimitris Politis)

Department of Mathematics
University of California, San Diego

April 17, 2025

1 / 57

Overview

1. Prediction inference of Non-linear Autoregressive models

2. Deep Model-free generative prediction method for regression

3. Scalable subsampling for DNN training

2 / 57

Prediction inference of Non-linear Autoregressive models1

1This part is based on:
• Wu, K. and Politis, D.N., Bootstrap Prediction Inference of Nonlinear Autoregressive Models, Journal of Time Series Analysis

2024, 45, 800-822.

• Wu, K., Non-parametric Forward Bootstrap on Predicting Non-linear Time Series: Consistency, Pertinence and Debiasing,
Stats 2023, 6(3), 839-867.

3 / 57

Background

• Time series is a (discrete-time) stochastic process, i.e., {Xt, t ∈ Z}. Its realization is called
time series data, e.g., heights of ocean tides, and counts of sunspots.

• Prediction inference is about determining Optimal Predictor (OP), usually in L2 or L1
sense, and Prediction Interval (PI), percentile or centered version, of future value XT+k,
k ≥ 1, based on observed {X0, . . . , XT }. We are concerned about the Coverage Rate (CVR)
and Length (LEN) of PI.

4 / 57

Background

• Time series is a (discrete-time) stochastic process, i.e., {Xt, t ∈ Z}. Its realization is called
time series data, e.g., heights of ocean tides, and counts of sunspots.

• Prediction inference is about determining Optimal Predictor (OP), usually in L2 or L1
sense, and Prediction Interval (PI), percentile or centered version, of future value XT+k,
k ≥ 1, based on observed {X0, . . . , XT }. We are concerned about the Coverage Rate (CVR)
and Length (LEN) of PI.

4 / 57

Background

• Time series is a (discrete-time) stochastic process, i.e., {Xt, t ∈ Z}. Its realization is called
time series data, e.g., heights of ocean tides, and counts of sunspots.

• Prediction inference is about determining Optimal Predictor (OP), usually in L2 or L1
sense, and Prediction Interval (PI), percentile or centered version, of future value XT+k,
k ≥ 1, based on observed {X0, . . . , XT }. We are concerned about the Coverage Rate (CVR)
and Length (LEN) of PI.

4 / 57

Two situations

Simple case:

If {X0, . . . , XT } are i.i.d.. Take sample mean and sample median to be L2 and L1 OPs,
respectively. Rely on sample quantile values to build PIs.

Time series model:

We assume that the time series data is generated by some underlying mechanism:

Xt = G(Xt−p, ϵt),

where:

• G(·, ·) could be any suitable linear/non-linear function that makes the time series have
desired property.

• ϵt ∼ Fϵ is called innovation and assumed to be i.i.d. with appropriate moments and
independent with Xt−i, i ≥ 1.

• Xt−p represents {Xt−1, . . . , Xt−p}.

5 / 57

Two situations
Simple case:

If {X0, . . . , XT } are i.i.d.. Take sample mean and sample median to be L2 and L1 OPs,
respectively. Rely on sample quantile values to build PIs.

Time series model:

We assume that the time series data is generated by some underlying mechanism:

Xt = G(Xt−p, ϵt),

where:

• G(·, ·) could be any suitable linear/non-linear function that makes the time series have
desired property.

• ϵt ∼ Fϵ is called innovation and assumed to be i.i.d. with appropriate moments and
independent with Xt−i, i ≥ 1.

• Xt−p represents {Xt−1, . . . , Xt−p}.

5 / 57

Two situations
Simple case:

If {X0, . . . , XT } are i.i.d.. Take sample mean and sample median to be L2 and L1 OPs,
respectively. Rely on sample quantile values to build PIs.

Time series model:

We assume that the time series data is generated by some underlying mechanism:

Xt = G(Xt−p, ϵt),

where:

• G(·, ·) could be any suitable linear/non-linear function that makes the time series have
desired property.

• ϵt ∼ Fϵ is called innovation and assumed to be i.i.d. with appropriate moments and
independent with Xt−i, i ≥ 1.

• Xt−p represents {Xt−1, . . . , Xt−p}.

5 / 57

Monte Carlo (MC) simulation for multi-step ahead prediction

Apply Monte Carlo (MC) simulation to do predictions:

1 Simulate {ϵ(i)T+1, . . . , ϵ
(i)
T+k}

M
i=1 from Fϵ .

2 Compute pseudo {X(i)
T+k}

M
i=1, i.e., X(i)

T+ j = G(XT+ j−p, ϵ
(i)
T+ j), for j = 1, . . . , k.

3 Take sample mean and median of {X(i)
T+k}

M
i=1 to approximate optimal predictors, respectively.

Take corresponding quantile values to approximate PIs with arbitrary coverage rates. We
call such type of PI Simulation PI (SPI).

Limitation: In practice, model information is generally not known to participators. Thus, this
prediction is Oracle.

6 / 57

Monte Carlo (MC) simulation for multi-step ahead prediction

Apply Monte Carlo (MC) simulation to do predictions:

1 Simulate {ϵ(i)T+1, . . . , ϵ
(i)
T+k}

M
i=1 from Fϵ .

2 Compute pseudo {X(i)
T+k}

M
i=1, i.e., X(i)

T+ j = G(XT+ j−p, ϵ
(i)
T+ j), for j = 1, . . . , k.

3 Take sample mean and median of {X(i)
T+k}

M
i=1 to approximate optimal predictors, respectively.

Take corresponding quantile values to approximate PIs with arbitrary coverage rates. We
call such type of PI Simulation PI (SPI).

Limitation: In practice, model information is generally not known to participators. Thus, this
prediction is Oracle.

6 / 57

Monte Carlo (MC) simulation for multi-step ahead prediction

Apply Monte Carlo (MC) simulation to do predictions:

1 Simulate {ϵ(i)T+1, . . . , ϵ
(i)
T+k}

M
i=1 from Fϵ .

2 Compute pseudo {X(i)
T+k}

M
i=1, i.e., X(i)

T+ j = G(XT+ j−p, ϵ
(i)
T+ j), for j = 1, . . . , k.

3 Take sample mean and median of {X(i)
T+k}

M
i=1 to approximate optimal predictors, respectively.

Take corresponding quantile values to approximate PIs with arbitrary coverage rates. We
call such type of PI Simulation PI (SPI).

Limitation: In practice, model information is generally not known to participators. Thus, this
prediction is Oracle.

6 / 57

Bootstrap for multi-step prediction

Apply Bootstrap to do predictions:

1 Bootstrap {ϵ̂(i)T+1, . . . , ϵ̂
(i)
T+k}

M
i=1 from F̂ϵ .

2 Compute pseudo {X̂(i)
T+k}

M
i=1 iteratively, i.e., X̂(i)

T+ j = Ĝ(XT+ j−p, ϵ̂
(i)
T+ j), for j = 1, . . . , k.

3 Take sample mean and median of {X̂(i)
T+k}

M
i=1 to approximate optimal predictors, respectively.

Take corresponding quantile values to approximate PIs with arbitrary coverage rates. We
call such type of PI Quantile PI (QPI).

Limitation: In practice with finite samples, this Bootstrap-based PI suffers undercoverage.

7 / 57

Bootstrap for multi-step prediction

Apply Bootstrap to do predictions:

1 Bootstrap {ϵ̂(i)T+1, . . . , ϵ̂
(i)
T+k}

M
i=1 from F̂ϵ .

2 Compute pseudo {X̂(i)
T+k}

M
i=1 iteratively, i.e., X̂(i)

T+ j = Ĝ(XT+ j−p, ϵ̂
(i)
T+ j), for j = 1, . . . , k.

3 Take sample mean and median of {X̂(i)
T+k}

M
i=1 to approximate optimal predictors, respectively.

Take corresponding quantile values to approximate PIs with arbitrary coverage rates. We
call such type of PI Quantile PI (QPI).

Limitation: In practice with finite samples, this Bootstrap-based PI suffers undercoverage.

7 / 57

Bootstrap for multi-step prediction

Apply Bootstrap to do predictions:

1 Bootstrap {ϵ̂(i)T+1, . . . , ϵ̂
(i)
T+k}

M
i=1 from F̂ϵ .

2 Compute pseudo {X̂(i)
T+k}

M
i=1 iteratively, i.e., X̂(i)

T+ j = Ĝ(XT+ j−p, ϵ̂
(i)
T+ j), for j = 1, . . . , k.

3 Take sample mean and median of {X̂(i)
T+k}

M
i=1 to approximate optimal predictors, respectively.

Take corresponding quantile values to approximate PIs with arbitrary coverage rates. We
call such type of PI Quantile PI (QPI).

Limitation: In practice with finite samples, this Bootstrap-based PI suffers undercoverage.

7 / 57

Main algorithm of our prediction method

1 Do estimations to get Ĝ(·, ·) and F̂ϵ . Then, perform the bootstrap prediction to get X̂T+k.

2 Generate a pseudo series {X∗0, . . . , X
∗
T+k} by viewing Ĝ(·, ·) and F̂ϵ as the true model and

innovation distribution in the bootstrap world.

3 Re-estimate model to get Ĝ∗(·, ·) with {X∗0, . . . , X
∗
T }; Re-define {X∗T−p+1 = XT−p+1,

. . . , X∗T = XT }. Then do the bootstrap prediction with Ĝ∗(·, ·) and F̂ϵ to get X̂∗T+k. Record the
predictive root X∗T+k − X̂∗T+k in the bootstrap world.

4 Repeat the above process M times, collect M predictive roots and take its empirical
distribution to approximate the distribution of XT+k − X̂T−k.

5 The (1 − α)100% PI for XT+k centered at X̂T+k can be approximated by
[X̂T+k + q(α/2), X̂T+k + q(1 − α/2)], where q(α) is the α-quantile of the empirical
distribution of X∗T+k − X̂∗T+k.

8 / 57

Main algorithm of our prediction method

1 Do estimations to get Ĝ(·, ·) and F̂ϵ . Then, perform the bootstrap prediction to get X̂T+k.

2 Generate a pseudo series {X∗0, . . . , X
∗
T+k} by viewing Ĝ(·, ·) and F̂ϵ as the true model and

innovation distribution in the bootstrap world.

3 Re-estimate model to get Ĝ∗(·, ·) with {X∗0, . . . , X
∗
T }; Re-define {X∗T−p+1 = XT−p+1,

. . . , X∗T = XT }. Then do the bootstrap prediction with Ĝ∗(·, ·) and F̂ϵ to get X̂∗T+k. Record the
predictive root X∗T+k − X̂∗T+k in the bootstrap world.

4 Repeat the above process M times, collect M predictive roots and take its empirical
distribution to approximate the distribution of XT+k − X̂T−k.

5 The (1 − α)100% PI for XT+k centered at X̂T+k can be approximated by
[X̂T+k + q(α/2), X̂T+k + q(1 − α/2)], where q(α) is the α-quantile of the empirical
distribution of X∗T+k − X̂∗T+k.

8 / 57

Main algorithm of our prediction method

1 Do estimations to get Ĝ(·, ·) and F̂ϵ . Then, perform the bootstrap prediction to get X̂T+k.

2 Generate a pseudo series {X∗0, . . . , X
∗
T+k} by viewing Ĝ(·, ·) and F̂ϵ as the true model and

innovation distribution in the bootstrap world.

3 Re-estimate model to get Ĝ∗(·, ·) with {X∗0, . . . , X
∗
T }; Re-define {X∗T−p+1 = XT−p+1,

. . . , X∗T = XT }. Then do the bootstrap prediction with Ĝ∗(·, ·) and F̂ϵ to get X̂∗T+k. Record the
predictive root X∗T+k − X̂∗T+k in the bootstrap world.

4 Repeat the above process M times, collect M predictive roots and take its empirical
distribution to approximate the distribution of XT+k − X̂T−k.

5 The (1 − α)100% PI for XT+k centered at X̂T+k can be approximated by
[X̂T+k + q(α/2), X̂T+k + q(1 − α/2)], where q(α) is the α-quantile of the empirical
distribution of X∗T+k − X̂∗T+k.

8 / 57

Main algorithm of our prediction method

1 Do estimations to get Ĝ(·, ·) and F̂ϵ . Then, perform the bootstrap prediction to get X̂T+k.

2 Generate a pseudo series {X∗0, . . . , X
∗
T+k} by viewing Ĝ(·, ·) and F̂ϵ as the true model and

innovation distribution in the bootstrap world.

3 Re-estimate model to get Ĝ∗(·, ·) with {X∗0, . . . , X
∗
T }; Re-define {X∗T−p+1 = XT−p+1,

. . . , X∗T = XT }. Then do the bootstrap prediction with Ĝ∗(·, ·) and F̂ϵ to get X̂∗T+k. Record the
predictive root X∗T+k − X̂∗T+k in the bootstrap world.

4 Repeat the above process M times, collect M predictive roots and take its empirical
distribution to approximate the distribution of XT+k − X̂T−k.

5 The (1 − α)100% PI for XT+k centered at X̂T+k can be approximated by
[X̂T+k + q(α/2), X̂T+k + q(1 − α/2)], where q(α) is the α-quantile of the empirical
distribution of X∗T+k − X̂∗T+k.

8 / 57

Main algorithm of our prediction method

1 Do estimations to get Ĝ(·, ·) and F̂ϵ . Then, perform the bootstrap prediction to get X̂T+k.

2 Generate a pseudo series {X∗0, . . . , X
∗
T+k} by viewing Ĝ(·, ·) and F̂ϵ as the true model and

innovation distribution in the bootstrap world.

3 Re-estimate model to get Ĝ∗(·, ·) with {X∗0, . . . , X
∗
T }; Re-define {X∗T−p+1 = XT−p+1,

. . . , X∗T = XT }. Then do the bootstrap prediction with Ĝ∗(·, ·) and F̂ϵ to get X̂∗T+k. Record the
predictive root X∗T+k − X̂∗T+k in the bootstrap world.

4 Repeat the above process M times, collect M predictive roots and take its empirical
distribution to approximate the distribution of XT+k − X̂T−k.

5 The (1 − α)100% PI for XT+k centered at X̂T+k can be approximated by
[X̂T+k + q(α/2), X̂T+k + q(1 − α/2)], where q(α) is the α-quantile of the empirical
distribution of X∗T+k − X̂∗T+k.

8 / 57

Main algorithm of our prediction method

1 Do estimations to get Ĝ(·, ·) and F̂ϵ . Then, perform the bootstrap prediction to get X̂T+k.

2 Generate a pseudo series {X∗0, . . . , X
∗
T+k} by viewing Ĝ(·, ·) and F̂ϵ as the true model and

innovation distribution in the bootstrap world.

3 Re-estimate model to get Ĝ∗(·, ·) with {X∗0, . . . , X
∗
T }; Re-define {X∗T−p+1 = XT−p+1,

. . . , X∗T = XT }. Then do the bootstrap prediction with Ĝ∗(·, ·) and F̂ϵ to get X̂∗T+k. Record the
predictive root X∗T+k − X̂∗T+k in the bootstrap world.

4 Repeat the above process M times, collect M predictive roots and take its empirical
distribution to approximate the distribution of XT+k − X̂T−k.

5 The (1 − α)100% PI for XT+k centered at X̂T+k can be approximated by
[X̂T+k + q(α/2), X̂T+k + q(1 − α/2)], where q(α) is the α-quantile of the empirical
distribution of X∗T+k − X̂∗T+k.

8 / 57

Pertinent Prediction Interval (PPI)

Definition (informal): Pertinent Prediction Interval (PPI)
In brief, a PI is pertinent if it accounts for all variability involved in the prediction procedure; see
Politis (2015) and Wang and Politis (2021) for formal definitions.

1 supa |F̂ϵ(a) − Fϵ(a)|
p
→ 0.

2 supa |P(τT A∗m ≤ a) − P(τT Am ≤ a)|
p
→ 0,

For example, we assume that we can decompose G(Xt−p, ϵt) as M(Xt−p) + ϵt;
A∗m = M̂∗(x) − M̂(x); Am = M̂(x) − M(x).

9 / 57

Pertinent Prediction Interval (PPI)

Definition (informal): Pertinent Prediction Interval (PPI)
In brief, a PI is pertinent if it accounts for all variability involved in the prediction procedure; see
Politis (2015) and Wang and Politis (2021) for formal definitions.

1 supa |F̂ϵ(a) − Fϵ(a)|
p
→ 0.

2 supa |P(τT A∗m ≤ a) − P(τT Am ≤ a)|
p
→ 0,

For example, we assume that we can decompose G(Xt−p, ϵt) as M(Xt−p) + ϵt;
A∗m = M̂∗(x) − M̂(x); Am = M̂(x) − M(x).

9 / 57

Pertinent Prediction Interval (PPI)

Definition (informal): Pertinent Prediction Interval (PPI)
In brief, a PI is pertinent if it accounts for all variability involved in the prediction procedure; see
Politis (2015) and Wang and Politis (2021) for formal definitions.

1 supa |F̂ϵ(a) − Fϵ(a)|
p
→ 0.

2 supa |P(τT A∗m ≤ a) − P(τT Am ≤ a)|
p
→ 0,

For example, we assume that we can decompose G(Xt−p, ϵt) as M(Xt−p) + ϵt;
A∗m = M̂∗(x) − M̂(x); Am = M̂(x) − M(x).

9 / 57

Pertinent Prediction Interval (PPI)

Definition (informal): Pertinent Prediction Interval (PPI)
In brief, a PI is pertinent if it accounts for all variability involved in the prediction procedure; see
Politis (2015) and Wang and Politis (2021) for formal definitions.

1 supa |F̂ϵ(a) − Fϵ(a)|
p
→ 0.

2 supa |P(τT A∗m ≤ a) − P(τT Am ≤ a)|
p
→ 0,

For example, we assume that we can decompose G(Xt−p, ϵt) as M(Xt−p) + ϵt;
A∗m = M̂∗(x) − M̂(x); Am = M̂(x) − M(x).

9 / 57

Pertinent Prediction Interval (PPI)

Definition (informal): Pertinent Prediction Interval (PPI)
In brief, a PI is pertinent if it accounts for all variability involved in the prediction procedure; see
Politis (2015) and Wang and Politis (2021) for formal definitions.

1 supa |F̂ϵ(a) − Fϵ(a)|
p
→ 0.

2 supa |P(τT A∗m ≤ a) − P(τT Am ≤ a)|
p
→ 0,

For example, we assume that we can decompose G(Xt−p, ϵt) as M(Xt−p) + ϵt;
A∗m = M̂∗(x) − M̂(x); Am = M̂(x) − M(x).

9 / 57

Parametric Non-linear Autoregressive (NLAR) models

First, we consider the case that we can decompose G(Xt−p, ϵt) as a parametric non-linear model2:

Xt = G(Xt−1, ϵt) = m(Xt−1, θ1) + σ(Xt−1, θ2)ϵt,

where:

• m(·) is the mean function which is Lipschitz continuous w.r.t. the first and second arguments
for their domain, respectively.

• σ(·) is the positive and bounded variance function which is Lipschitz continuous w.r.t. the
first and second arguments for their domains, respectively.

• θ1 ∈ Θ1 and θ2 ∈ Θ2, where Θ1 and Θ2 are all bounded sets in Rd.

• For ϵt, it is mean zero and variance 1; fϵ(·) is continuous and everywhere positive.

2To simplify notation, we consider models with order 1.
10 / 57

Parametric Non-linear Autoregressive (NLAR) models

First, we consider the case that we can decompose G(Xt−p, ϵt) as a parametric non-linear model2:

Xt = G(Xt−1, ϵt) = m(Xt−1, θ1) + σ(Xt−1, θ2)ϵt,

where:

• m(·) is the mean function which is Lipschitz continuous w.r.t. the first and second arguments
for their domain, respectively.

• σ(·) is the positive and bounded variance function which is Lipschitz continuous w.r.t. the
first and second arguments for their domains, respectively.

• θ1 ∈ Θ1 and θ2 ∈ Θ2, where Θ1 and Θ2 are all bounded sets in Rd.

• For ϵt, it is mean zero and variance 1; fϵ(·) is continuous and everywhere positive.

2To simplify notation, we consider models with order 1.
10 / 57

Parametric Non-linear Autoregressive (NLAR) models

First, we consider the case that we can decompose G(Xt−p, ϵt) as a parametric non-linear model2:

Xt = G(Xt−1, ϵt) = m(Xt−1, θ1) + σ(Xt−1, θ2)ϵt,

where:

• m(·) is the mean function which is Lipschitz continuous w.r.t. the first and second arguments
for their domain, respectively.

• σ(·) is the positive and bounded variance function which is Lipschitz continuous w.r.t. the
first and second arguments for their domains, respectively.

• θ1 ∈ Θ1 and θ2 ∈ Θ2, where Θ1 and Θ2 are all bounded sets in Rd.

• For ϵt, it is mean zero and variance 1; fϵ(·) is continuous and everywhere positive.

2To simplify notation, we consider models with order 1.
10 / 57

Two-step estimation process

•

θ̂1 = arg min
ϑ∈Θ1

LT (ϑ) = arg min
ϑ∈Θ1

1
T

T∑
t=1

(Xt − m(Xt−1, ϑ))2

•

θ̂2 = arg min
ϑ∈Θ2

KT (ϑ, θ̂1) = arg min
ϑ∈Θ2

∣∣∣∣∣∣∣ 1T
T∑

t=1

Xt − m(Xt−1, θ̂1)
σ(Xt−1, ϑ)

2 − 1

∣∣∣∣∣∣∣ .

11 / 57

Two-step estimation process

•

θ̂1 = arg min
ϑ∈Θ1

LT (ϑ) = arg min
ϑ∈Θ1

1
T

T∑
t=1

(Xt − m(Xt−1, ϑ))2

•

θ̂2 = arg min
ϑ∈Θ2

KT (ϑ, θ̂1) = arg min
ϑ∈Θ2

∣∣∣∣∣∣∣ 1T
T∑

t=1

Xt − m(Xt−1, θ̂1)
σ(Xt−1, ϑ)

2 − 1

∣∣∣∣∣∣∣ .

11 / 57

Two-step estimation process

•

θ̂1 = arg min
ϑ∈Θ1

LT (ϑ) = arg min
ϑ∈Θ1

1
T

T∑
t=1

(Xt − m(Xt−1, ϑ))2

•

θ̂2 = arg min
ϑ∈Θ2

KT (ϑ, θ̂1) = arg min
ϑ∈Θ2

∣∣∣∣∣∣∣ 1T
T∑

t=1

Xt − m(Xt−1, θ̂1)
σ(Xt−1, ϑ)

2 − 1

∣∣∣∣∣∣∣ .

11 / 57

Consistency of OP and asymptotic validity of QPI

Theorem 1: Consistency of prediction
For k ≥ 1 we have:

sup
|x|≤cT

∣∣∣FX∗T+k |XT ,...,X0(x) − FXT+k |XT (x)
∣∣∣ p
→ 0,

where

• X∗T+k = G(XT ; ϵ̂∗T+1, . . . , ϵ̂
∗
T+k; θ̂). This is computed by X∗T+i = m(X∗T+i−1, θ̂1)

+σ(X∗T+i−1, θ̂2)ϵ̂∗T+i iteratively for i = 1, . . . , k. Similar for XT+k.

• {ϵ̂∗i }
T+k
i=T+1are i.i.d. ∼ F̂ϵ .

• cT is an appropriate sequence converges to infinity as T converges to infinity.

• FX∗T+k |XT ,...,X0(x) is the distribution of k-step ahead future value in the bootstrap world, i.e.,
conditional on all observed data.

• FXT+k |XT (x) is the distribution of k-step ahead future value in the real world.

12 / 57

Consistency of OP and asymptotic validity of QPI

Theorem 1: Consistency of prediction
For k ≥ 1 we have:

sup
|x|≤cT

∣∣∣FX∗T+k |XT ,...,X0(x) − FXT+k |XT (x)
∣∣∣ p
→ 0,

where

• X∗T+k = G(XT ; ϵ̂∗T+1, . . . , ϵ̂
∗
T+k; θ̂). This is computed by X∗T+i = m(X∗T+i−1, θ̂1)

+σ(X∗T+i−1, θ̂2)ϵ̂∗T+i iteratively for i = 1, . . . , k. Similar for XT+k.

• {ϵ̂∗i }
T+k
i=T+1are i.i.d. ∼ F̂ϵ .

• cT is an appropriate sequence converges to infinity as T converges to infinity.

• FX∗T+k |XT ,...,X0(x) is the distribution of k-step ahead future value in the bootstrap world, i.e.,
conditional on all observed data.

• FXT+k |XT (x) is the distribution of k-step ahead future value in the real world.

12 / 57

Consistency of OP and asymptotic validity of QPI

Theorem 1: Consistency of prediction
For k ≥ 1 we have:

sup
|x|≤cT

∣∣∣FX∗T+k |XT ,...,X0(x) − FXT+k |XT (x)
∣∣∣ p
→ 0,

where

• X∗T+k = G(XT ; ϵ̂∗T+1, . . . , ϵ̂
∗
T+k; θ̂). This is computed by X∗T+i = m(X∗T+i−1, θ̂1)

+σ(X∗T+i−1, θ̂2)ϵ̂∗T+i iteratively for i = 1, . . . , k. Similar for XT+k.

• {ϵ̂∗i }
T+k
i=T+1are i.i.d. ∼ F̂ϵ .

• cT is an appropriate sequence converges to infinity as T converges to infinity.

• FX∗T+k |XT ,...,X0(x) is the distribution of k-step ahead future value in the bootstrap world, i.e.,
conditional on all observed data.

• FXT+k |XT (x) is the distribution of k-step ahead future value in the real world.

12 / 57

Estimation inference of θ̂1 and θ̂2, θ̂∗1 and θ̂∗2

Theorem 2: Estimation inference
Based on the realization {X0, . . . , XT } ∈ ΩT , where P((X0, . . . , XT) < ΩT) = o(1) as T → ∞, under
other suitable assumptions, we have:

√
T (̂θ1 − θ1)

d
→ N(0, B−1

1 Ω1B−1
1) ;

√
T (̂θ2 − θ2)

d
→ N(0, B−1

2 Ω2B−1
2);

√
T (̂θ∗1 − θ̂1)

d
→ N(0, B−1

1 Ω1B−1
1) ;

√
T (̂θ∗2 − θ̂2)

d
→ N(0, B−1

2 Ω2B−1
2);

where

• Ω1 = 4 · E(σ(X0, θ2)R1σ(X0, θ2)); B1 = 2 · E
(
∇ϕ(X0, θ1)(∇ϕ(X0, θ1))⊤

)
; R1 = ∇ϕ(X0, θ1)

∇ϕ(X0, θ1)⊤; here ∇ is the gradient operator w.r.t. θ1.

• Ω2 = 4 · E(B3R2B⊤3); B3 = E(∇g(X1, X0, θ2, θ1)); R2 = (g(X1, X0, θ2, θ1) − 1)2;

B2 = 2 · (E(∇g(X1, X0, θ2, θ1)) · (E(∇g(X1, X0, θ2, θ1))⊤; g(X1, X0, θ2, θ1) =
(

X1−ϕ(X0,θ1)
σ(X0,θ2)

)2
; here

∇ is the gradient operator w.r.t. θ2.

13 / 57

Non-parametric NLAR models

When the parametric format is unknown, we assume that we only know the data-generating
mechanism of time series consists of two parts:

Xt = G(Xt−1, ϵt) = m(Xt−1) + σ(Xt−1)ϵt.

14 / 57

Local constant estimator

m̃h(x) =
∑T

t=1 K(x−Xt−1
h)Xt∑T

t=1 K(x−Xt−1
h)

and σ̃h(x) =
∑T

t=1 K(x−Xt−1
h)(Xt − m̃h(Xt−1))2∑T
t=1 K(x−Xt−1

h)
;

15 / 57

QPI and PPI in the non-parametric prediction approach

Theorem 3: QPI and PPI of non-parametric prediction
Let m̂g(x) and σ̂g(x) be estimated mean and variance functions to generate bootstrap series in the
bootstrap world. With the under-smoothing debiasing strategy, i.e., we take g = h and take a
bandwidth rate satisfying hT 1/5 → 0. The QPI and PPI are still possible with the main prediction
algorithm.

16 / 57

Simulation for parametric prediction approach
Simulation model (Threshold model):

Xt = (0.5 · Xt−1 + 0.2 · Xt−2 + 0.1 · Xt−3)I(Xt−1 ≤ 0) + (0.8 · Xt−1)I(Xt−1 > 0) + ϵt; ϵt ∼ N(0, 1).

Simulation setting:

We take the number of bootstrap times M = 1000. We repeat simulations N = 5000 times. We
take α = 0.05.

Simulation measurement:
•

CVR of the k-th step ahead prediction =
1
N

N∑
n=1

IXn,k∈[Ln,k ,Un,k], for k = 1, . . . , 5.

•

LEN of the k-th step ahead PI =
1
N

N∑
n=1

(Un,k − Ln,k), for k = 1, . . . , 5,

where [Ln,k,Un,k] and Xn,k represent k-th step ahead prediction intervals and the true future value
in the n-th replication, respectively.

17 / 57

Simulation results
Threshold Model: Xt = (0.5 · Xt−1 + 0.2 · Xt−2 + 0.1 · Xt−3)I(Xt−1 ≤ 0) + (0.8 · Xt−1)I(Xt−1 > 0) + ϵt , ϵt ∼ N(0, 1)

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9420 0.9506 0.9468 0.9444 0.9372 3.88 4.68 5.11 5.40 5.58
QPI-p 0.9462 0.9512 0.9502 0.9474 0.9428 3.92 4.72 5.16 5.45 5.64
L2-PPI-f 0.9446 0.9510 0.9486 0.9470 0.9408 3.90 4.71 5.15 5.44 5.63
L2-PPI-p 0.9466 0.9542 0.9516 0.9494 0.9434 3.94 4.75 5.20 5.49 5.69
L1-PPI-f 0.9448 0.9518 0.9478 0.9468 0.9402 3.90 4.71 5.15 5.44 5.62
L1-PPI-p 0.9470 0.9544 0.9500 0.9486 0.9436 3.94 4.75 5.20 5.49 5.68
SPI 0.9446 0.9534 0.9508 0.9510 0.9454 3.90 4.71 5.16 5.46 5.65

T = 100

QPI-f 0.9270 0.9304 0.9294 0.9272 0.9250 3.81 4.57 4.98 5.23 5.40
QPI-p 0.9370 0.9412 0.9368 0.9372 0.9372 3.98 4.76 5.19 5.46 5.63
L2-PPI-f 0.9358 0.9352 0.9338 0.9314 0.9298 3.95 4.71 5.13 5.40 5.59
L2-PPI-p 0.9454 0.9454 0.9444 0.9430 0.9418 4.10 4.90 5.34 5.63 5.83
L1-PPI-f 0.9364 0.9360 0.9336 0.9310 0.9304 3.95 4.71 5.13 5.39 5.58
L1-PPI-p 0.9450 0.9456 0.9432 0.9422 0.9412 4.11 4.90 5.33 5.62 5.81
SPI 0.9446 0.9472 0.9498 0.9474 0.9478 3.90 4.71 5.16 5.46 5.65

T = 50

QPI-f 0.8980 0.9054 0.9018 0.8950 0.8926 3.66 4.47 4.87 5.14 5.38
QPI-p 0.9260 0.9314 0.9272 0.9218 0.9212 4.05 4.97 5.42 5.74 5.99
L2-PPI-f 0.9340 0.9268 0.9214 0.9164 0.9152 4.22 5.10 5.86 6.89 8.97
L2-PPI-p 0.9522 0.9478 0.9404 0.9400 0.9376 4.60 5.57 6.36 7.33 9.03
L1-PPI-f 0.9338 0.9268 0.9194 0.9144 0.9130 4.23 5.09 5.82 6.79 8.71
L1-PPI-p 0.9522 0.9482 0.9384 0.9378 0.9356 4.61 5.55 6.30 7.20 8.71
SPI 0.9494 0.9448 0.9464 0.9458 0.9462 3.90 4.71 5.16 5.46 5.65

Note: “-f” and “-p” represent fitted and predictive residuals, respectively. “L2” and “L1” represent the center of PPI is L2 and L1 OP, respectively.

18 / 57

Deep Model-free generative prediction method for regression3

3This part is based on:
• Wu, K. and Politis, D.N., Deep Limit Model-free Prediction in Regression. (Submitted to ACM/IMS Journal of Data Science)

19 / 57

Regression analysis

Regression analysis is a statistical process to explore the relationship between
dependent/outcome variable Y and independent/predictors variable X:

X Y
?

For example,

• Simple linear regression: relationship of heights between father and son;

• Quantile regression: impact of education, experience, etc., on different quantiles of income;

• Casual inference: effects of treatments on patients.

20 / 57

Regression analysis

Regression analysis is a statistical process to explore the relationship between
dependent/outcome variable Y and independent/predictors variable X:

X Y
?

For example,

• Simple linear regression: relationship of heights between father and son;

• Quantile regression: impact of education, experience, etc., on different quantiles of income;

• Casual inference: effects of treatments on patients.

20 / 57

Regression analysis

Regression analysis is a statistical process to explore the relationship between
dependent/outcome variable Y and independent/predictors variable X:

X Y
?

For example,

• Simple linear regression: relationship of heights between father and son;

• Quantile regression: impact of education, experience, etc., on different quantiles of income;

• Casual inference: effects of treatments on patients.

20 / 57

Regression analysis

Regression analysis is a statistical process to explore the relationship between
dependent/outcome variable Y and independent/predictors variable X:

X Y
?

For example,

• Simple linear regression: relationship of heights between father and son;

• Quantile regression: impact of education, experience, etc., on different quantiles of income;

• Casual inference: effects of treatments on patients.

20 / 57

Regression analysis

Regression analysis is a statistical process to explore the relationship between
dependent/outcome variable Y and independent/predictors variable X:

X Y
?

For example,

• Simple linear regression: relationship of heights between father and son;

• Quantile regression: impact of education, experience, etc., on different quantiles of income;

• Casual inference: effects of treatments on patients.

20 / 57

Model as bridge

Classically, people assume there is a model f that may explain the relationship between X and Y:
∼ means that the association between X and Y may not be exactly described by f or there is a
measurement error.

X Y
∼ f

For example, a general homoscedastic model:

Y = f (X) + ε;

where f (·) could be parametric or non-parametric; ε ∼ Fε.

• Simple linear regression: Y = βT X + ε;
• Quantile regression: QY (τ|X) = βT

τ X;

• Casual inference: f (x) = E
(
Y1 − Y0 | X = x

)
(Conditional Treatment Effects function).

21 / 57

Model as bridge
Classically, people assume there is a model f that may explain the relationship between X and Y:
4

X Y
∼ f

For example, a general homoscedastic model:

Y = f (X) + ε;

where f (·) could be parametric or non-parametric; ε ∼ Fε.

• Simple linear regression: Y = βT X + ε;
• Quantile regression: QY (τ|X) = βT

τ X;

• Casual inference: f (x) = E
(
Y1 − Y0 | X = x

)
(Conditional Treatment Effects function).

4∼ means that the association between X and Y may not be exactly described by f or there is a measurement error.
21 / 57

Model as bridge
Classically, people assume there is a model f that may explain the relationship between X and Y:
4

X Y
∼ f

For example, a general homoscedastic model:

Y = f (X) + ε;

where f (·) could be parametric or non-parametric; ε ∼ Fε.

• Simple linear regression: Y = βT X + ε;
• Quantile regression: QY (τ|X) = βT

τ X;

• Casual inference: f (x) = E
(
Y1 − Y0 | X = x

)
(Conditional Treatment Effects function).

4∼ means that the association between X and Y may not be exactly described by f or there is a measurement error.
21 / 57

Model as bridge
Classically, people assume there is a model f that may explain the relationship between X and Y:
4

X Y
∼ f

For example, a general homoscedastic model:

Y = f (X) + ε;

where f (·) could be parametric or non-parametric; ε ∼ Fε.

• Simple linear regression: Y = βT X + ε;
• Quantile regression: QY (τ|X) = βT

τ X;

• Casual inference: f (x) = E
(
Y1 − Y0 | X = x

)
(Conditional Treatment Effects function).

4∼ means that the association between X and Y may not be exactly described by f or there is a measurement error.
21 / 57

Model as bridge
Classically, people assume there is a model f that may explain the relationship between X and Y:
4

X Y
∼ f

For example, a general homoscedastic model:

Y = f (X) + ε;

where f (·) could be parametric or non-parametric; ε ∼ Fε.

• Simple linear regression: Y = βT X + ε;

• Quantile regression: QY (τ|X) = βT
τ X;

• Casual inference: f (x) = E
(
Y1 − Y0 | X = x

)
(Conditional Treatment Effects function).

4∼ means that the association between X and Y may not be exactly described by f or there is a measurement error.
21 / 57

Model as bridge
Classically, people assume there is a model f that may explain the relationship between X and Y:
4

X Y
∼ f

For example, a general homoscedastic model:

Y = f (X) + ε;

where f (·) could be parametric or non-parametric; ε ∼ Fε.

• Simple linear regression: Y = βT X + ε;
• Quantile regression: QY (τ|X) = βT

τ X;

• Casual inference: f (x) = E
(
Y1 − Y0 | X = x

)
(Conditional Treatment Effects function).

4∼ means that the association between X and Y may not be exactly described by f or there is a measurement error.
21 / 57

Model as bridge
Classically, people assume there is a model f that may explain the relationship between X and Y:
4

X Y
∼ f

For example, a general homoscedastic model:

Y = f (X) + ε;

where f (·) could be parametric or non-parametric; ε ∼ Fε.

• Simple linear regression: Y = βT X + ε;
• Quantile regression: QY (τ|X) = βT

τ X;

• Casual inference: f (x) = E
(
Y1 − Y0 | X = x

)
(Conditional Treatment Effects function).

4∼ means that the association between X and Y may not be exactly described by f or there is a measurement error.
21 / 57

Estimation of model

In practice, we estimate f (·) by f̂ (·) based on sample {Xi,Yi}
n
i=1: 5

X Y
≈ f̂

Therefore, we need to quantify the estimation accuracy, e.g., by Confidence Interval (CI).

5Compared to ∼, ≈ involves additional estimation error.
22 / 57

Estimation of model

In practice, we estimate f (·) by f̂ (·) based on sample {Xi,Yi}
n
i=1: 5

X Y
≈ f̂

Therefore, we need to quantify the estimation accuracy, e.g., by Confidence Interval (CI).

5Compared to ∼, ≈ involves additional estimation error.
22 / 57

Estimation of model

In practice, we estimate f (·) by f̂ (·) based on sample {Xi,Yi}
n
i=1: 5

X Y
≈ f̂

Therefore, we need to quantify the estimation accuracy, e.g., by Confidence Interval (CI).

5Compared to ∼, ≈ involves additional estimation error.
22 / 57

Prediction with model

We care about the prediction of Y0 given some future value of X0 = x0 based on f̂ (·):

x0 Y0 =?
≈ f̂

To quantify the prediction accuracy, we build Prediction Interval (PI). However, it usually
requires the normality assumption or it suffers the undercoverage in the finite sample cases.

23 / 57

Prediction with model

We care about the prediction of Y0 given some future value of X0 = x0 based on f̂ (·):

x0 Y0 =?
≈ f̂

To quantify the prediction accuracy, we build Prediction Interval (PI). However, it usually
requires the normality assumption or it suffers the undercoverage in the finite sample cases.

23 / 57

Prediction with model

We care about the prediction of Y0 given some future value of X0 = x0 based on f̂ (·):

x0 Y0 =?
≈ f̂

To quantify the prediction accuracy, we build Prediction Interval (PI). However, it usually
requires the normality assumption or it suffers the undercoverage in the finite sample cases.

23 / 57

What if model is wrong?

Essentially, all models are wrong, but some are useful.
—George Box

Possible scenarios in applications:

• The true model is non-linear, but we may assume it is linear;

• Even a complicated Y = f (X) + g(X) · ε, where f and g are in non-parametric form, could
also be wrong since it assumes an additive structure;

• Sometimes, a “wrong” model may work better than the true model for prediction purposes.

24 / 57

What if model is wrong?

Essentially, all models are wrong, but some are useful.
—George Box

Possible scenarios in applications:

• The true model is non-linear, but we may assume it is linear;

• Even a complicated Y = f (X) + g(X) · ε, where f and g are in non-parametric form, could
also be wrong since it assumes an additive structure;

• Sometimes, a “wrong” model may work better than the true model for prediction purposes.

24 / 57

What if model is wrong?

Essentially, all models are wrong, but some are useful.
—George Box

Possible scenarios in applications:

• The true model is non-linear, but we may assume it is linear;

• Even a complicated Y = f (X) + g(X) · ε, where f and g are in non-parametric form, could
also be wrong since it assumes an additive structure;

• Sometimes, a “wrong” model may work better than the true model for prediction purposes.

24 / 57

What if model is wrong?

Essentially, all models are wrong, but some are useful.
—George Box

Possible scenarios in applications:

• The true model is non-linear, but we may assume it is linear;

• Even a complicated Y = f (X) + g(X) · ε, where f and g are in non-parametric form, could
also be wrong since it assumes an additive structure;

• Sometimes, a “wrong” model may work better than the true model for prediction purposes.

24 / 57

What if model is wrong?

Essentially, all models are wrong, but some are useful.
—George Box

Possible scenarios in applications:

• The true model is non-linear, but we may assume it is linear;

• Even a complicated Y = f (X) + g(X) · ε, where f and g are in non-parametric form, could
also be wrong since it assumes an additive structure;

• Sometimes, a “wrong” model may work better than the true model for prediction purposes.

24 / 57

What if model is wrong?

Essentially, all models are wrong, but some are useful.
—George Box

Possible scenarios in applications:

• The true model is non-linear, but we may assume it is linear;

• Even a complicated Y = f (X) + g(X) · ε, where f and g are in non-parametric form, could
also be wrong since it assumes an additive structure;

• Sometimes, a “wrong” model may work better than the true model for prediction purposes.

24 / 57

Basic assumptions

• X and Y have a joint distribution PX,Y ;6

• The domain of Y and X are compact sets, respectively, i.e., Y := [−M1,M1] and
X := [−M2,M2]d; M1 and M2 are two positive constants. 7

We call our method Model-free since no restricted model format is assumed.

6We assume that the joint density of PX,Y exists to avoid some potential degenerate cases.
7A weaker assumption could be made such that P (|Y | > τ) ≤ Cρ−τ1 and P (∥X∥ > τ) ≤ Cρ−τ2 for some appropriate ρ1

and ρ2 (sub-exponential). Then, the event that X and Y belong to a compact set has a high probability.
25 / 57

Basic assumptions

• X and Y have a joint distribution PX,Y ;6

• The domain of Y and X are compact sets, respectively, i.e., Y := [−M1,M1] and
X := [−M2,M2]d; M1 and M2 are two positive constants. 7

We call our method Model-free since no restricted model format is assumed.

6We assume that the joint density of PX,Y exists to avoid some potential degenerate cases.
7A weaker assumption could be made such that P (|Y | > τ) ≤ Cρ−τ1 and P (∥X∥ > τ) ≤ Cρ−τ2 for some appropriate ρ1

and ρ2 (sub-exponential). Then, the event that X and Y belong to a compact set has a high probability.
25 / 57

Intuition

In the standard regression context we have the diagram, X
∼ f
←→ Y; ∼ is due to the model

misspecification/insufficiency and unobserved measurement error.

Can we outsource the unobserved error and make our model as flexible as it could?

X Y

Z

G

Here, G : X ×Z → Y;Z is the domain of the reference random variable Z.

26 / 57

Intuition

In the standard regression context we have the diagram, X
∼ f
←→ Y; ∼ is due to the model

misspecification/insufficiency and unobserved measurement error.

Can we outsource the unobserved error and make our model as flexible as it could?

X Y

Z

G

Here, G : X ×Z → Y;Z is the domain of the reference random variable Z.

26 / 57

Intuition

In the standard regression context we have the diagram, X
∼ f
←→ Y; ∼ is due to the model

misspecification/insufficiency and unobserved measurement error.

Can we outsource the unobserved error and make our model as flexible as it could?

X Y

Z

G

Here, G : X ×Z → Y;Z is the domain of the reference random variable Z.

26 / 57

Intuition

In the standard regression context we have the diagram, X
∼ f
←→ Y; ∼ is due to the model

misspecification/insufficiency and unobserved measurement error.

Can we outsource the unobserved error and make our model as flexible as it could?

X Y

Z

G

Here, G : X ×Z → Y;Z is the domain of the reference random variable Z.

26 / 57

Noise outsourcing lemma

G(·, ·) could make a connection between X and Y .

Lemma 1: Noise outsourcing (Bloem-Reddy et al., 2020)

Let X and Y be random variables with joint distribution PX,Y . Then, there is a measurable
function G : [0, 1]p × X → Y such that

Y a.s.
= G(X,Z), where Z ∼ Uniform[0, 1]p and Z ⊥⊥ X.

In other words, the randomness in the conditional distribution of Y given X = x is outsourced to
reference random variable Z through G(x,Z).

27 / 57

Noise outsourcing lemma

G(·, ·) could make a connection between X and Y .

Lemma 1: Noise outsourcing (Bloem-Reddy et al., 2020)

Let X and Y be random variables with joint distribution PX,Y . Then, there is a measurable
function G : [0, 1]p × X → Y such that

Y a.s.
= G(X,Z), where Z ∼ Uniform[0, 1]p and Z ⊥⊥ X.

In other words, the randomness in the conditional distribution of Y given X = x is outsourced to
reference random variable Z through G(x,Z).

27 / 57

Noise outsourcing lemma

G(·, ·) could make a connection between X and Y .

Lemma 1: Noise outsourcing (Bloem-Reddy et al., 2020)

Let X and Y be random variables with joint distribution PX,Y . Then, there is a measurable
function G : [0, 1]p × X → Y such that

Y a.s.
= G(X,Z), where Z ∼ Uniform[0, 1]p and Z ⊥⊥ X.

In other words, the randomness in the conditional distribution of Y given X = x is outsourced to
reference random variable Z through G(x,Z).

27 / 57

A continuous counterpart of G(·, ·)

To estimate G(·, ·) with data, we hope it can possess some smoothness property (at least C0). It
turns out that:

Proposition 1: A continuous counterpart of G(·, ·) exists

Under some basic assumptions, we have a continuous G̃(·, ·) : X ×Z → Y such that
G̃(x, z) = G(x, z) for all (x, z) except a negligible (in Lebesgue measure) set.

To simplify the notation, we will keep using G(·, ·) for this continuous counterpart. We will focus
on estimating this continuous variant by Deep Neural Networks (DNN) and make predictions
based on it.

28 / 57

A continuous counterpart of G(·, ·)

To estimate G(·, ·) with data, we hope it can possess some smoothness property (at least C0). It
turns out that:

Proposition 1: A continuous counterpart of G(·, ·) exists

Under some basic assumptions, we have a continuous G̃(·, ·) : X ×Z → Y such that
G̃(x, z) = G(x, z) for all (x, z) except a negligible (in Lebesgue measure) set.

To simplify the notation, we will keep using G(·, ·) for this continuous counterpart. We will focus
on estimating this continuous variant by Deep Neural Networks (DNN) and make predictions
based on it.

28 / 57

A continuous counterpart of G(·, ·)

To estimate G(·, ·) with data, we hope it can possess some smoothness property (at least C0). It
turns out that:

Proposition 1: A continuous counterpart of G(·, ·) exists

Under some basic assumptions, we have a continuous G̃(·, ·) : X ×Z → Y such that
G̃(x, z) = G(x, z) for all (x, z) except a negligible (in Lebesgue measure) set.

To simplify the notation, we will keep using G(·, ·) for this continuous counterpart. We will focus
on estimating this continuous variant by Deep Neural Networks (DNN) and make predictions
based on it.

28 / 57

A continuous counterpart of G(·, ·)

To estimate G(·, ·) with data, we hope it can possess some smoothness property (at least C0). It
turns out that:

Proposition 1: A continuous counterpart of G(·, ·) exists

Under some basic assumptions, we have a continuous G̃(·, ·) : X ×Z → Y such that
G̃(x, z) = G(x, z) for all (x, z) except a negligible (in Lebesgue measure) set.

To simplify the notation, we will keep using G(·, ·) for this continuous counterpart. We will focus
on estimating this continuous variant by Deep Neural Networks (DNN) and make predictions
based on it.

28 / 57

The structure of Deep Neural Networks

In short, the structure of fully connected feedforward Deep Neural Networks (DNN) mainly
depends on:

• The input and output dimensions;

• Depth: L ∈ N;

• Width: W ∈ NL.

We can write a DNN function fDNN as

fDNN(x) = AL+1(ϕ(AL(· · · ϕ(A3ϕ(A2ϕ(A1x + b1) + b2) + b3) · · ·) + bL) + bL+1;

where {Ai}
L+1
i=1 are weight matrices whose shapes depend on W and output dimension; {bi}

L+1
i=1 are

intercept terms; ϕ(·) is the activation function.

29 / 57

The structure of Deep Neural Networks

In short, the structure of fully connected feedforward Deep Neural Networks (DNN) mainly
depends on:

• The input and output dimensions;

• Depth: L ∈ N;

• Width: W ∈ NL.

We can write a DNN function fDNN as

fDNN(x) = AL+1(ϕ(AL(· · · ϕ(A3ϕ(A2ϕ(A1x + b1) + b2) + b3) · · ·) + bL) + bL+1;

where {Ai}
L+1
i=1 are weight matrices whose shapes depend on W and output dimension; {bi}

L+1
i=1 are

intercept terms; ϕ(·) is the activation function.

29 / 57

The structure of Deep Neural Networks

In short, the structure of fully connected feedforward Deep Neural Networks (DNN) mainly
depends on:

• The input and output dimensions;

• Depth: L ∈ N;

• Width: W ∈ NL.

We can write a DNN function fDNN as

fDNN(x) = AL+1(ϕ(AL(· · · ϕ(A3ϕ(A2ϕ(A1x + b1) + b2) + b3) · · ·) + bL) + bL+1;

where {Ai}
L+1
i=1 are weight matrices whose shapes depend on W and output dimension; {bi}

L+1
i=1 are

intercept terms; ϕ(·) is the activation function.

29 / 57

Figure 1: The illustration of a fully connected DNN with L = 2, W1 = W2 = 4; input dimension
and output dimension are 2 and 1, respectively.

30 / 57

Training algorithm

Algorithm Training procedure to get empirically optimal estimator Ĥ

1: Initiate a DNN Hθ ∈ FDNNFDNN is a user-chosen space that contains all DNN candidates. and
simulate {Zi}

n
i=1 from PZ .

2: for number of epochs do
3: Update Hθ by descending its gradient with the chosen optimization algorithm:

∇θ

1
n

n∑
i=1

(Yi − Hθ(Xi,Zi))2

 .
4: Clip the parameter of Hθ to [−m,m].
5: end for
6: Return The estimated Ĥ(·, ·).

31 / 57

Training algorithm

Algorithm Training procedure to get empirically optimal estimator Ĥ

1: Initiate a DNN Hθ ∈ FDNN
8 and simulate {Zi}

n
i=1 from PZ .

2: for number of epochs do
3: Update Hθ by descending its gradient with the chosen optimization algorithm:

∇θ

1
n

n∑
i=1

(Yi − Hθ(Xi,Zi))2

 .
4: Clip the parameter of Hθ to [−m,m].
5: end for
6: Return The estimated Ĥ(·, ·).

8FDNN is a user-chosen space that contains all DNN candidates.
31 / 57

Error bound for Ĥ

Theorem 4: A high probability non-asymptotic error bound for Ĥ

Taking the appropriate reference random variable Z and FDNN to be a class of fully connected
feedforward DNN functions with width W and depth L.

When sample size n is large enough and under some further mild conditions, we have:∥∥∥∥Ĥ −G
∥∥∥∥2

L2(X,Z)
≤ C · n−

2
τ+d+p + o(n−

2
τ+d+p); for d + p ≥ 2; τ > 2;

with probability at least 1 − exp(−n
d+p
τ+d+p); where C is a constant.

W := 3d+p+3 max
{
(d + p)

⌊
N1/(d+p)

1

⌋
,N1 + 1

}
; L := 12N2 + 14 + 2(d + p); N1 =

 n
d+p

2(τ+d+p)

log n

; N2 =
⌈
log(n)

⌉
.

32 / 57

Error bound for Ĥ

Theorem 4: A high probability non-asymptotic error bound for Ĥ

Taking the appropriate reference random variable Z and FDNN to be a class of fully connected
feedforward DNN functions with width W and depth L.

When sample size n is large enough and under some further mild conditions, we have:∥∥∥∥Ĥ −G
∥∥∥∥2

L2(X,Z)
≤ C · n−

2
τ+d+p + o(n−

2
τ+d+p); for d + p ≥ 2; τ > 2;

with probability at least 1 − exp(−n
d+p
τ+d+p); where C is a constant.

W := 3d+p+3 max
{
(d + p)

⌊
N1/(d+p)

1

⌋
,N1 + 1

}
; L := 12N2 + 14 + 2(d + p); N1 =

 n
d+p

2(τ+d+p)

log n

; N2 =
⌈
log(n)

⌉
.

32 / 57

Error bound for Ĥ

Theorem 4: A high probability non-asymptotic error bound for Ĥ

Taking the appropriate reference random variable Z and FDNN to be a class of fully connected
feedforward DNN functions with width W and depth L.

When sample size n is large enough and under some further mild conditions, we have:∥∥∥∥Ĥ −G
∥∥∥∥2

L2(X,Z)
≤ C · n−

2
τ+d+p + o(n−

2
τ+d+p); for d + p ≥ 2; τ > 2;

with probability at least 1 − exp(−n
d+p
τ+d+p); where C is a constant.

W := 3d+p+3 max
{
(d + p)

⌊
N1/(d+p)

1

⌋
,N1 + 1

}
; L := 12N2 + 14 + 2(d + p); N1 =

 n
d+p

2(τ+d+p)

log n

; N2 =
⌈
log(n)

⌉
.

32 / 57

Error bound for Ĥ

Theorem 4: A high probability non-asymptotic error bound for Ĥ

Taking the appropriate reference random variable Z and FDNN to be a class of fully connected
feedforward DNN functions with width W and depth L.

When sample size n is large enough and under some further mild conditions, we have:∥∥∥∥Ĥ −G
∥∥∥∥2

L2(X,Z)
≤ C · n−

2
τ+d+p + o(n−

2
τ+d+p); for d + p ≥ 2; τ > 2;

with probability at least 1 − exp(−n
d+p
τ+d+p); where C is a constant.

W := 3d+p+3 max
{
(d + p)

⌊
N1/(d+p)

1

⌋
,N1 + 1

}
; L := 12N2 + 14 + 2(d + p); N1 =

 n
d+p

2(τ+d+p)

log n

; N2 =
⌈
log(n)

⌉
.

32 / 57

Estimation of conditional distribution

Define F̂Ĥ(x0,Z) as the empirical distribution of {Ĥ(x0,Zi)}Si=1; S is the number of Monte Carlo
sampling we apply to generate values of reference random variable.

Under some additional restrictions about PX,Y , we have

Theorem 5: Uniform estimation of FY |X based on Ĥ

we have:
sup

y

∣∣∣∣F̂Ĥ(x0,Z)(y) − FY |x0(y)
∣∣∣∣ p
−→ 0, as n→ ∞, S → ∞,

for any x0 ∈ X and y ∈ Y, with probability at least 1 − exp(−n
d+p
τ+d+p).

33 / 57

Estimation of conditional distribution

Define F̂Ĥ(x0,Z) as the empirical distribution of {Ĥ(x0,Zi)}Si=1; S is the number of Monte Carlo
sampling we apply to generate values of reference random variable.

Under some additional restrictions about PX,Y , we have

Theorem 5: Uniform estimation of FY |X based on Ĥ

we have:
sup

y

∣∣∣∣F̂Ĥ(x0,Z)(y) − FY |x0(y)
∣∣∣∣ p
−→ 0, as n→ ∞, S → ∞,

for any x0 ∈ X and y ∈ Y, with probability at least 1 − exp(−n
d+p
τ+d+p).

33 / 57

Estimation of conditional distribution

Define F̂Ĥ(x0,Z) as the empirical distribution of {Ĥ(x0,Zi)}Si=1; S is the number of Monte Carlo
sampling we apply to generate values of reference random variable.

Under some additional restrictions about PX,Y , we have

Theorem 5: Uniform estimation of FY |X based on Ĥ

we have:
sup

y

∣∣∣∣F̂Ĥ(x0,Z)(y) − FY |x0(y)
∣∣∣∣ p
−→ 0, as n→ ∞, S → ∞,

for any x0 ∈ X and y ∈ Y, with probability at least 1 − exp(−n
d+p
τ+d+p).

33 / 57

Motivation to make prediction interval

The diagram to do prediction in Background:

x0 Y0 =?
≈ f̂

Here, ≈ represents error comes from two sources:

1 The association between X and Y is not exactly described by f or there is measurement
error;

2 The estimation error within f̂ .

An oracle G(·, ·) can solve both error sources a.s.. However, error (2) still exists in practice.

34 / 57

Motivation to make prediction interval

The diagram to do prediction in Background:

x0 Y0 =?
≈ f̂

Here, ≈ represents error comes from two sources:

1 The association between X and Y is not exactly described by f or there is measurement
error;

2 The estimation error within f̂ .

An oracle G(·, ·) can solve both error sources a.s.. However, error (2) still exists in practice.

34 / 57

Motivation to make prediction interval

The diagram to do prediction in Background:

x0 Y0 =?
≈ f̂

Here, ≈ represents error comes from two sources:

1 The association between X and Y is not exactly described by f or there is measurement
error;

2 The estimation error within f̂ .

An oracle G(·, ·) can solve both error sources a.s.. However, error (2) still exists in practice.

34 / 57

Motivation to make prediction interval

The diagram to do prediction in Background:

x0 Y0 =?
≈ f̂

Here, ≈ represents error comes from two sources:

1 The association between X and Y is not exactly described by f or there is measurement
error;

2 The estimation error within f̂ .

An oracle G(·, ·) can solve both error sources a.s.. However, error (2) still exists in practice.

34 / 57

Preparations for PPI

In a similar idea with Part I, we mimic the estimation process by pseudo values:

{Xi}
n
i=1

(
{Y(1)

i }
n
i=1, . . . , {Y

(B)
i }

n
i=1

)
(
{Z(1)

i }
n
i=1, . . . , {Z

(B)
i }

n
i=1

)
Generation based on Ĥ

Then, make re-estimation to get {Ĥ(b)}Bb=1 based on
(
{Y(1)

i }
n
i=1, . . . , {Y

(B)
i }

n
i=1

)
, {Xi}

n
i=1 and {Zi}

n
i=1.

35 / 57

Preparations for PPI

In a similar idea with Part I, we mimic the estimation process by pseudo values:

{Xi}
n
i=1

(
{Y(1)

i }
n
i=1, . . . , {Y

(B)
i }

n
i=1

)
(
{Z(1)

i }
n
i=1, . . . , {Z

(B)
i }

n
i=1

)
Generation based on Ĥ

Then, make re-estimation to get {Ĥ(b)}Bb=1 based on
(
{Y(1)

i }
n
i=1, . . . , {Y

(B)
i }

n
i=1

)
, {Xi}

n
i=1 and {Zi}

n
i=1.

35 / 57

Preparations for PPI

In a similar idea with Part I, we mimic the estimation process by pseudo values:

{Xi}
n
i=1

(
{Y(1)

i }
n
i=1, . . . , {Y

(B)
i }

n
i=1

)
(
{Z(1)

i }
n
i=1, . . . , {Z

(B)
i }

n
i=1

)
Generation based on Ĥ

Then, make re-estimation to get {Ĥ(b)}Bb=1 based on
(
{Y(1)

i }
n
i=1, . . . , {Y

(B)
i }

n
i=1

)
, {Xi}

n
i=1 and {Zi}

n
i=1.

35 / 57

The form of PPI based on Ĥ

Conditional on {(Xi,Yi,Zi)}ni=1, we approximate the predictive root R0 by the variant R∗0:

R∗0
Approximate
−−−−−−−−−→

d
R0;

where,

• R0 could be Y0 − Ŷ0,L2 ; Y0 ∼ PY |x0 and Ŷ0,L2 := E(Ĥ(x0,Z)) is the estimated optimal L2
conditional point prediction; we approximate it by 1

S
∑S

s=1 Ĥ(x0,Zs);

• R∗0 could be Y (b)
0 − Ŷ (b)

0,L2
; Y (b)

0 ∼ Ĥ(x0,Z) and Ŷ (b)
0,L2

:= E(Ĥ(b)(x0,Z)) is the estimated optimal

L2 point prediction conditional on training data; we approximate it by 1
S
∑S

s=1 Ĥ(b)(x0,Zs);
Ĥ(b) is the b-th re-estimation.

Thus, a pertinent PI with 1 − α coverage rate centered at Ŷ0,L2 has the form:[
Ŷ0,L2 + Qα/2, Ŷ0,L2 + Q1−α/2

]
;

Qα/2 and Q1−α/2 are α/2 and 1 − α/2 lower quantiles of PR∗0 , the distribution of R∗0. In practice,
PR∗0 can be approximated by the empirical distribution of {Y (b)

0 − Ŷ (b)
0,L2
}Bb=1.

36 / 57

The form of PPI based on Ĥ
Conditional on {(Xi,Yi,Zi)}ni=1, we approximate the predictive root R0 by the variant R∗0:

R∗0
Approximate
−−−−−−−−−→

d
R0;

where,

• R0 could be Y0 − Ŷ0,L2 ; Y0 ∼ PY |x0 and Ŷ0,L2 := E(Ĥ(x0,Z)) is the estimated optimal L2
conditional point prediction; we approximate it by 1

S
∑S

s=1 Ĥ(x0,Zs);

• R∗0 could be Y (b)
0 − Ŷ (b)

0,L2
; Y (b)

0 ∼ Ĥ(x0,Z) and Ŷ (b)
0,L2

:= E(Ĥ(b)(x0,Z)) is the estimated optimal

L2 point prediction conditional on training data; we approximate it by 1
S
∑S

s=1 Ĥ(b)(x0,Zs);
Ĥ(b) is the b-th re-estimation.

Thus, a pertinent PI with 1 − α coverage rate centered at Ŷ0,L2 has the form:[
Ŷ0,L2 + Qα/2, Ŷ0,L2 + Q1−α/2

]
;

Qα/2 and Q1−α/2 are α/2 and 1 − α/2 lower quantiles of PR∗0 , the distribution of R∗0. In practice,
PR∗0 can be approximated by the empirical distribution of {Y (b)

0 − Ŷ (b)
0,L2
}Bb=1.

36 / 57

The form of PPI based on Ĥ
Conditional on {(Xi,Yi,Zi)}ni=1, we approximate the predictive root R0 by the variant R∗0:

R∗0
Approximate
−−−−−−−−−→

d
R0;

where,
• R0 could be Y0 − Ŷ0,L2 ; Y0 ∼ PY |x0 and Ŷ0,L2 := E(Ĥ(x0,Z)) is the estimated optimal L2

conditional point prediction; we approximate it by 1
S
∑S

s=1 Ĥ(x0,Zs);

• R∗0 could be Y (b)
0 − Ŷ (b)

0,L2
; Y (b)

0 ∼ Ĥ(x0,Z) and Ŷ (b)
0,L2

:= E(Ĥ(b)(x0,Z)) is the estimated optimal

L2 point prediction conditional on training data; we approximate it by 1
S
∑S

s=1 Ĥ(b)(x0,Zs);
Ĥ(b) is the b-th re-estimation.

Thus, a pertinent PI with 1 − α coverage rate centered at Ŷ0,L2 has the form:[
Ŷ0,L2 + Qα/2, Ŷ0,L2 + Q1−α/2

]
;

Qα/2 and Q1−α/2 are α/2 and 1 − α/2 lower quantiles of PR∗0 , the distribution of R∗0. In practice,
PR∗0 can be approximated by the empirical distribution of {Y (b)

0 − Ŷ (b)
0,L2
}Bb=1.

36 / 57

The form of PPI based on Ĥ
Conditional on {(Xi,Yi,Zi)}ni=1, we approximate the predictive root R0 by the variant R∗0:

R∗0
Approximate
−−−−−−−−−→

d
R0;

where,
• R0 could be Y0 − Ŷ0,L2 ; Y0 ∼ PY |x0 and Ŷ0,L2 := E(Ĥ(x0,Z)) is the estimated optimal L2

conditional point prediction; we approximate it by 1
S
∑S

s=1 Ĥ(x0,Zs);

• R∗0 could be Y (b)
0 − Ŷ (b)

0,L2
; Y (b)

0 ∼ Ĥ(x0,Z) and Ŷ (b)
0,L2

:= E(Ĥ(b)(x0,Z)) is the estimated optimal

L2 point prediction conditional on training data; we approximate it by 1
S
∑S

s=1 Ĥ(b)(x0,Zs);
Ĥ(b) is the b-th re-estimation.

Thus, a pertinent PI with 1 − α coverage rate centered at Ŷ0,L2 has the form:[
Ŷ0,L2 + Qα/2, Ŷ0,L2 + Q1−α/2

]
;

Qα/2 and Q1−α/2 are α/2 and 1 − α/2 lower quantiles of PR∗0 , the distribution of R∗0. In practice,
PR∗0 can be approximated by the empirical distribution of {Y (b)

0 − Ŷ (b)
0,L2
}Bb=1.

36 / 57

The form of PPI based on Ĥ
Conditional on {(Xi,Yi,Zi)}ni=1, we approximate the predictive root R0 by the variant R∗0:

R∗0
Approximate
−−−−−−−−−→

d
R0;

where,
• R0 could be Y0 − Ŷ0,L2 ; Y0 ∼ PY |x0 and Ŷ0,L2 := E(Ĥ(x0,Z)) is the estimated optimal L2

conditional point prediction; we approximate it by 1
S
∑S

s=1 Ĥ(x0,Zs);

• R∗0 could be Y (b)
0 − Ŷ (b)

0,L2
; Y (b)

0 ∼ Ĥ(x0,Z) and Ŷ (b)
0,L2

:= E(Ĥ(b)(x0,Z)) is the estimated optimal

L2 point prediction conditional on training data; we approximate it by 1
S
∑S

s=1 Ĥ(b)(x0,Zs);
Ĥ(b) is the b-th re-estimation.

Thus, a pertinent PI with 1 − α coverage rate centered at Ŷ0,L2 has the form:[
Ŷ0,L2 + Qα/2, Ŷ0,L2 + Q1−α/2

]
;

Qα/2 and Q1−α/2 are α/2 and 1 − α/2 lower quantiles of PR∗0 , the distribution of R∗0. In practice,
PR∗0 can be approximated by the empirical distribution of {Y (b)

0 − Ŷ (b)
0,L2
}Bb=1.

36 / 57

The form of PPI based on Ĥ
Conditional on {(Xi,Yi,Zi)}ni=1, we approximate the predictive root R0 by the variant R∗0:

R∗0
Approximate
−−−−−−−−−→

d
R0;

where,
• R0 could be Y0 − Ŷ0,L2 ; Y0 ∼ PY |x0 and Ŷ0,L2 := E(Ĥ(x0,Z)) is the estimated optimal L2

conditional point prediction; we approximate it by 1
S
∑S

s=1 Ĥ(x0,Zs);

• R∗0 could be Y (b)
0 − Ŷ (b)

0,L2
; Y (b)

0 ∼ Ĥ(x0,Z) and Ŷ (b)
0,L2

:= E(Ĥ(b)(x0,Z)) is the estimated optimal

L2 point prediction conditional on training data; we approximate it by 1
S
∑S

s=1 Ĥ(b)(x0,Zs);
Ĥ(b) is the b-th re-estimation.

Thus, a pertinent PI with 1 − α coverage rate centered at Ŷ0,L2 has the form:[
Ŷ0,L2 + Qα/2, Ŷ0,L2 + Q1−α/2

]
;

Qα/2 and Q1−α/2 are α/2 and 1 − α/2 lower quantiles of PR∗0 , the distribution of R∗0. In practice,
PR∗0 can be approximated by the empirical distribution of {Y (b)

0 − Ŷ (b)
0,L2
}Bb=1.

36 / 57

Other DNN generative methods
Recently, Zhou et al. (2023) and Liu et al. (2021) proposed two conditional generators to estimate
the conditional distribution in the regression context. Their methods rely on the adversarial
training strategy which was first proposed by Goodfellow et al. (2014). We use ĜKL and ĜWA to
represent these two DNN-based deep generators, they can be trained by the below formula:

(ĜKL, D̂KL) = arg min
Gρ∈F ′DNN,G

arg max
Dϕ∈F ′DNN,D

1
n

n∑
i=1

Dϕ(Gρ(Zi, Xi), Xi) −
1
n

n∑
i=1

exp(Dϕ(Yi, Xi));

(ĜWA, D̂WA) = arg min
Gρ∈FDNN,G

arg max
Dϕ∈FDNN,D

1
n

n∑
i=1

Dϕ(Gρ(Zi, Xi), Xi) −
1
n

n∑
i=1

Dϕ(Yi, Xi).

• The objective functions are based on variants of KL-divergence and Wasserstein-1 distance;

• Dϕ is the discriminator/critic trained together with generator Gρ adversarially;

• F·,· and F ′·,· represent appropriate DNN classes.

37 / 57

Simulation setting for PI

We take the below model to generate n training and T test data:

Yi = X2
i,1 + exp

(
Xi,2 + Xi,3/3

)
+ Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2
)
· εi.

We consider 4 types of PI: QPI and PPI based on our method, PI-KL (QPI based on ĜKL) and
PI-WA (QPI based on ĜWA).

To simplify notation, we denote all PIs by Î and we consider two coverage rates under different
conditioning levels:

CV1 := P(Y0 ∈ Î) ; CV2 := P(Y0 ∈ Î|x0).

We approximate CV2 by 1
K
∑K

k=1 P(Y0 ∈ Î|x0, {(Xk
i ,Y

k
i)}ni=1); {(Xk

i ,Y
k
i)}ni=1 is the k-th training sets.

We approximate CV1 by 1
T
∑T

t=1 P(Y0 ∈ Î|xt); xt is the t-th test point.

38 / 57

Simulation setting for PI

We take the below model to generate n training and T test data:

Yi = X2
i,1 + exp

(
Xi,2 + Xi,3/3

)
+ Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2
)
· εi.

We consider 4 types of PI: QPI and PPI based on our method, PI-KL (QPI based on ĜKL) and
PI-WA (QPI based on ĜWA).

To simplify notation, we denote all PIs by Î and we consider two coverage rates under different
conditioning levels:

CV1 := P(Y0 ∈ Î) ; CV2 := P(Y0 ∈ Î|x0).

We approximate CV2 by 1
K
∑K

k=1 P(Y0 ∈ Î|x0, {(Xk
i ,Y

k
i)}ni=1); {(Xk

i ,Y
k
i)}ni=1 is the k-th training sets.

We approximate CV1 by 1
T
∑T

t=1 P(Y0 ∈ Î|xt); xt is the t-th test point.

38 / 57

Simulation setting for PI

We take the below model to generate n training and T test data:

Yi = X2
i,1 + exp

(
Xi,2 + Xi,3/3

)
+ Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2
)
· εi.

We consider 4 types of PI: QPI and PPI based on our method, PI-KL (QPI based on ĜKL) and
PI-WA (QPI based on ĜWA).

To simplify notation, we denote all PIs by Î and we consider two coverage rates under different
conditioning levels:

CV1 := P(Y0 ∈ Î) ; CV2 := P(Y0 ∈ Î|x0).

We approximate CV2 by 1
K
∑K

k=1 P(Y0 ∈ Î|x0, {(Xk
i ,Y

k
i)}ni=1); {(Xk

i ,Y
k
i)}ni=1 is the k-th training sets.

We approximate CV1 by 1
T
∑T

t=1 P(Y0 ∈ Î|xt); xt is the t-th test point.

38 / 57

Simulation setting for PI

We take the below model to generate n training and T test data:

Yi = X2
i,1 + exp

(
Xi,2 + Xi,3/3

)
+ Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2
)
· εi.

We consider 4 types of PI: QPI and PPI based on our method, PI-KL (QPI based on ĜKL) and
PI-WA (QPI based on ĜWA).

To simplify notation, we denote all PIs by Î and we consider two coverage rates under different
conditioning levels:

CV1 := P(Y0 ∈ Î) ; CV2 := P(Y0 ∈ Î|x0).

We approximate CV2 by 1
K
∑K

k=1 P(Y0 ∈ Î|x0, {(Xk
i ,Y

k
i)}ni=1); {(Xk

i ,Y
k
i)}ni=1 is the k-th training sets.

We approximate CV1 by 1
T
∑T

t=1 P(Y0 ∈ Î|xt); xt is the t-th test point.

38 / 57

Simulation setting for PI

We take the below model to generate n training and T test data:

Yi = X2
i,1 + exp

(
Xi,2 + Xi,3/3

)
+ Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2
)
· εi.

We consider 4 types of PI: QPI and PPI based on our method, PI-KL (QPI based on ĜKL) and
PI-WA (QPI based on ĜWA).

To simplify notation, we denote all PIs by Î and we consider two coverage rates under different
conditioning levels:

CV1 := P(Y0 ∈ Î) ; CV2 := P(Y0 ∈ Î|x0).

We approximate CV2 by 1
K
∑K

k=1 P(Y0 ∈ Î|x0, {(Xk
i ,Y

k
i)}ni=1); {(Xk

i ,Y
k
i)}ni=1 is the k-th training sets.

We approximate CV1 by 1
T
∑T

t=1 P(Y0 ∈ Î|xt); xt is the t-th test point.

38 / 57

Simulation setting for PI

We take the below model to generate n training and T test data:

Yi = X2
i,1 + exp

(
Xi,2 + Xi,3/3

)
+ Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2
)
· εi.

We consider 4 types of PI: QPI and PPI based on our method, PI-KL (QPI based on ĜKL) and
PI-WA (QPI based on ĜWA).

To simplify notation, we denote all PIs by Î and we consider two coverage rates under different
conditioning levels:

CV1 := P(Y0 ∈ Î) ; CV2 := P(Y0 ∈ Î|x0).

We approximate CV2 by 1
K
∑K

k=1 P(Y0 ∈ Î|x0, {(Xk
i ,Y

k
i)}ni=1); {(Xk

i ,Y
k
i)}ni=1 is the k-th training sets.

We approximate CV1 by 1
T
∑T

t=1 P(Y0 ∈ Î|xt); xt is the t-th test point.

38 / 57

Simulation setting

We take the same optimization algorithm RMSProp for all methods.

We take T = 2000; S = 10000; K = 200; α = 0.05 to evaluate different methods.

We take same DNN structure for all methods.

We also consider the sample standard deviation σ̂PI of 2000 CV2. Besides, we present the
average length (AL) of different PIs.

39 / 57

Simulation setting

We take the same optimization algorithm RMSProp for all methods.

We take T = 2000; S = 10000; K = 200; α = 0.05 to evaluate different methods.

We take same DNN structure for all methods.

We also consider the sample standard deviation σ̂PI of 2000 CV2. Besides, we present the
average length (AL) of different PIs.

39 / 57

Simulation setting

We take the same optimization algorithm RMSProp for all methods.

We take T = 2000; S = 10000; K = 200; α = 0.05 to evaluate different methods.

We take same DNN structure for all methods.

We also consider the sample standard deviation σ̂PI of 2000 CV2. Besides, we present the
average length (AL) of different PIs.

39 / 57

Simulation setting

We take the same optimization algorithm RMSProp for all methods.

We take T = 2000; S = 10000; K = 200; α = 0.05 to evaluate different methods.

We take same DNN structure for all methods.

We also consider the sample standard deviation σ̂PI of 2000 CV2. Besides, we present the
average length (AL) of different PIs.

39 / 57

Simulation setting

We take the same optimization algorithm RMSProp for all methods.

We take T = 2000; S = 10000; K = 200; α = 0.05 to evaluate different methods.

We take same DNN structure for all methods.

We also consider the sample standard deviation σ̂PI of 2000 CV2. Besides, we present the
average length (AL) of different PIs.

39 / 57

Simulation results of CV1

Table 1: Simulation results of CV1 with varying n and p.

CV1 AL CV1 AL CV1 AL

p = 5 n = 200 n = 500 n = 2000
QPI 0.861(0.170) 5.487(1.054) 0.927(0.110) 6.734(1.463) 0.787(0.177) 3.621(0.855)
PPI 0.893(0.139) 6.208(1.384) 0.941(0.095) 7.258(1.808) 0.789(0.173) 3.728(0.959)
PI-KL 0.842(0.193) 5.496(0.861) 0.869(0.157) 5.434(1.218) 0.913(0.104) 5.670(2.282)
PI-WA 0.852(0.181) 5.439(0.907) 0.882(0.150) 5.970(2.030) 0.899(0.105) 5.365(1.996)
p = 10
QPI 0.928(0.129) 7.497(0.720) 0.949(0.094) 8.194(0.950) 0.855(0.157) 4.474(0.817)
PPI 0.944(0.105) 8.103(1.072) 0.961(0.076) 8.623(1.325) 0.855(0.154) 4.546(0.953)
PI-KL 0.900(0.133) 6.701(0.835) 0.925(0.119) 6.806(0.933) 0.928(0.099) 5.882(1.403)
PI-WA 0.898(0.146) 6.757(0.719) 0.933(0.116) 7.545(1.340) 0.934(0.100) 6.199(1.880)
p = 15
QPI 0.915(0.137) 7.408(0.669) 0.945(0.097) 7.430(0.949) 0.915(0.123) 5.895(0.647)
PPI 0.930(0.119) 7.760(0.936) 0.953(0.085) 7.749(1.172) 0.916(0.121) 5.971(0.807)
PI-KL 0.909(0.136) 7.427(0.817) 0.949(0.095) 8.082(1.068) 0.943(0.089) 6.556(1.491)
PI-WA 0.901(0.137) 6.797(0.687) 0.950(0.095) 7.972(1.312) 0.947(0.088) 6.778(1.541)
p = 20
QPI 0.879(0.172) 6.726(0.485) 0.959(0.085) 8.830(0.683) 0.940(0.102) 6.849(0.562)
PPI 0.893(0.154) 6.941(0.702) 0.966(0.073) 9.100(0.950) 0.942(0.097) 6.925(0.759)
PI-KL 0.923(0.126) 7.799(0.842) 0.954(0.087) 8.311(0.861) 0.946(0.093) 6.806(1.097)
PI-WA 0.910(0.140) 7.402(0.698) 0.945(0.099) 8.011(0.800) 0.946(0.092) 6.804(1.534)
p = 25
QPI 0.871(0.172) 7.020(0.287) 0.961(0.088) 9.633(0.645) 0.946(0.099) 7.296(0.475)
PPI 0.884(0.160) 7.189(0.548) 0.967(0.078) 9.881(0.938) 0.948(0.095) 7.370(0.695)
PI-KL 0.907(0.142) 7.370(0.618) 0.954(0.090) 8.670(0.813) 0.945(0.093) 6.915(1.009)
PI-WA 0.897(0.151) 7.071(0.510) 0.960(0.081) 8.514(0.942) 0.944(0.097) 7.117(1.491)

40 / 57

Simulation results of CV1

Table 1: Simulation results of CV1 with varying n and p.

CV1 AL CV1 AL CV1 AL

p = 5 n = 200 n = 500 n = 2000
QPI 0.861(0.170) 5.487(1.054) 0.927(0.110) 6.734(1.463) 0.787(0.177) 3.621(0.855)
PPI 0.893(0.139) 6.208(1.384) 0.941(0.095) 7.258(1.808) 0.789(0.173) 3.728(0.959)
PI-KL 0.842(0.193) 5.496(0.861) 0.869(0.157) 5.434(1.218) 0.913(0.104) 5.670(2.282)
PI-WA 0.852(0.181) 5.439(0.907) 0.882(0.150) 5.970(2.030) 0.899(0.105) 5.365(1.996)
p = 10
QPI 0.928(0.129) 7.497(0.720) 0.949(0.094) 8.194(0.950) 0.855(0.157) 4.474(0.817)
PPI 0.944(0.105) 8.103(1.072) 0.961(0.076) 8.623(1.325) 0.855(0.154) 4.546(0.953)
PI-KL 0.900(0.133) 6.701(0.835) 0.925(0.119) 6.806(0.933) 0.928(0.099) 5.882(1.403)
PI-WA 0.898(0.146) 6.757(0.719) 0.933(0.116) 7.545(1.340) 0.934(0.100) 6.199(1.880)
p = 15
QPI 0.915(0.137) 7.408(0.669) 0.945(0.097) 7.430(0.949) 0.915(0.123) 5.895(0.647)
PPI 0.930(0.119) 7.760(0.936) 0.953(0.085) 7.749(1.172) 0.916(0.121) 5.971(0.807)
PI-KL 0.909(0.136) 7.427(0.817) 0.949(0.095) 8.082(1.068) 0.943(0.089) 6.556(1.491)
PI-WA 0.901(0.137) 6.797(0.687) 0.950(0.095) 7.972(1.312) 0.947(0.088) 6.778(1.541)
p = 20
QPI 0.879(0.172) 6.726(0.485) 0.959(0.085) 8.830(0.683) 0.940(0.102) 6.849(0.562)
PPI 0.893(0.154) 6.941(0.702) 0.966(0.073) 9.100(0.950) 0.942(0.097) 6.925(0.759)
PI-KL 0.923(0.126) 7.799(0.842) 0.954(0.087) 8.311(0.861) 0.946(0.093) 6.806(1.097)
PI-WA 0.910(0.140) 7.402(0.698) 0.945(0.099) 8.011(0.800) 0.946(0.092) 6.804(1.534)
p = 25
QPI 0.871(0.172) 7.020(0.287) 0.961(0.088) 9.633(0.645) 0.946(0.099) 7.296(0.475)
PPI 0.884(0.160) 7.189(0.548) 0.967(0.078) 9.881(0.938) 0.948(0.095) 7.370(0.695)
PI-KL 0.907(0.142) 7.370(0.618) 0.954(0.090) 8.670(0.813) 0.945(0.093) 6.915(1.009)
PI-WA 0.897(0.151) 7.071(0.510) 0.960(0.081) 8.514(0.942) 0.944(0.097) 7.117(1.491)

40 / 57

Simulation results of CV2: PPI vs PI-KL

Figure 2: Histograms of all undercoverage CV2 (CV2 less than nominal level 95%) of PPI and
PI-KL.

41 / 57

Simulation results of CV2: PPI vs PI-KL

Figure 2: Histograms of all undercoverage CV2 (CV2 less than nominal level 95%) of PPI and
PI-KL.

41 / 57

Simulation results of CV2: PPI vs PI-WA

Figure 3: Histograms of all undercoverage CV2 (CV2 less than nominal level 95%) of PPI and
PI-WA.

42 / 57

Simulation results of CV2: PPI vs PI-WA

Figure 3: Histograms of all undercoverage CV2 (CV2 less than nominal level 95%) of PPI and
PI-WA.

42 / 57

Simulation results of CV2: PPI vs QPI

Figure 4: Histograms of all undercoverage CV2 (CV2 less than nominal level 95%) of PPI and
QPI.

43 / 57

Simulation results of CV2: PPI vs QPI

Figure 4: Histograms of all undercoverage CV2 (CV2 less than nominal level 95%) of PPI and
QPI.

43 / 57

Theoretical explanations

Under further assumptions about the joint distribution PX,Y , we have:

Theorem 6: Theoretical understanding of PPI with DNN
For an appropriate sequence of sets Ωn, such that P(({Xi, Yi, Zi}

n
i=1) < Ωn) = o(1), PPI can capture

the estimation variability under S → ∞ in an appropriate rate for each n, when n→ ∞.
Furthermore,

sup
y

∣∣∣∣F̂Ĥ(x0,Z) ⋆ ϕσ(y) − FY |x0 ⋆ ϕσ(y)
∣∣∣∣ ≤ sup

y

∣∣∣∣F̂Ĥ(x0,Z)(y) − FY |x0(y)
∣∣∣∣ with probability 1;

F̂Ĥ(x0,Z) is the empirical distribution of {Ĥ(x0,Zi)}Si=1; ⋆ is the convolution operator; ϕσ is the
density function of the normal distribution N(0, σ2).

44 / 57

Scalable Subsampling for Deep Neural Networks training9

9This part is based on:
• Wu, K. and Politis, D.N., Scalable Subsampling Inference of Deep Neural Networks. ACM/IMS Journal of Data Science 2025,

2(1), 1–29.

45 / 57

Motivation

From the part II, we have seen the power of DNN. However, there are two crucial problems that
need more thoughts:

• The estimation error bound of DNN: According to the cornerstone of Stone (1982), it is
well-known that the optimal convergence rate of the estimation for a p-times continuously
differentiable function of a d-dimensional argument is n2p/(2p+d). The existing practically
achievable DNN estimator possesses a sub-optimal rate.

• The computational burden of training DNN: DNN has been developed rapidly fueled by
ever-increasing amounts of data. However, training a large DNN with a huge sample size
requires heavy computational resources.

We want to kill two birds with one stone.

46 / 57

Motivation

From the part II, we have seen the power of DNN. However, there are two crucial problems that
need more thoughts:

• The estimation error bound of DNN: According to the cornerstone of Stone (1982), it is
well-known that the optimal convergence rate of the estimation for a p-times continuously
differentiable function of a d-dimensional argument is n2p/(2p+d). The existing practically
achievable DNN estimator possesses a sub-optimal rate.

• The computational burden of training DNN: DNN has been developed rapidly fueled by
ever-increasing amounts of data. However, training a large DNN with a huge sample size
requires heavy computational resources.

We want to kill two birds with one stone.

46 / 57

Motivation

From the part II, we have seen the power of DNN. However, there are two crucial problems that
need more thoughts:

• The estimation error bound of DNN: According to the cornerstone of Stone (1982), it is
well-known that the optimal convergence rate of the estimation for a p-times continuously
differentiable function of a d-dimensional argument is n2p/(2p+d). The existing practically
achievable DNN estimator possesses a sub-optimal rate.

• The computational burden of training DNN: DNN has been developed rapidly fueled by
ever-increasing amounts of data. However, training a large DNN with a huge sample size
requires heavy computational resources.

We want to kill two birds with one stone.

46 / 57

Motivation

From the part II, we have seen the power of DNN. However, there are two crucial problems that
need more thoughts:

• The estimation error bound of DNN: According to the cornerstone of Stone (1982), it is
well-known that the optimal convergence rate of the estimation for a p-times continuously
differentiable function of a d-dimensional argument is n2p/(2p+d). The existing practically
achievable DNN estimator possesses a sub-optimal rate.

• The computational burden of training DNN: DNN has been developed rapidly fueled by
ever-increasing amounts of data. However, training a large DNN with a huge sample size
requires heavy computational resources.

We want to kill two birds with one stone.

46 / 57

Motivation

From the part II, we have seen the power of DNN. However, there are two crucial problems that
need more thoughts:

• The estimation error bound of DNN: According to the cornerstone of Stone (1982), it is
well-known that the optimal convergence rate of the estimation for a p-times continuously
differentiable function of a d-dimensional argument is n2p/(2p+d). The existing practically
achievable DNN estimator possesses a sub-optimal rate.

• The computational burden of training DNN: DNN has been developed rapidly fueled by
ever-increasing amounts of data. However, training a large DNN with a huge sample size
requires heavy computational resources.

We want to kill two birds with one stone.

46 / 57

Intuition

• Variance reduction: To improve the convergence rate of an estimator, we can try to
decrease its variance if its bias is acceptable. This is inspired by bagging method of Breiman
(1996).

• Build estimators on subsamples: To relieve the computational burden, we can repeat the
estimation with subsamples if the computation with the whole sample is infeasible. This
approach shares a general divide-and-conquer idea originally proposed in computer science
(Cormen et al., 1989).

Example: A simple implementation

Suppose we need O(nζ) operations to compute one estimator θ̂n for true parameter θ. If we
consider q = O(n/b) number of estimations θ̂b,i on subsamples with size b for i = 1, . . . , q, we can
take θ̄b,n,SS := 1

q
∑q

i=1 θ̂b,i to approximate θ̂n. Then, only O
(
nbζ−1

)
operations are needed.

47 / 57

Intuition

• Variance reduction: To improve the convergence rate of an estimator, we can try to
decrease its variance if its bias is acceptable. This is inspired by bagging method of Breiman
(1996).

• Build estimators on subsamples: To relieve the computational burden, we can repeat the
estimation with subsamples if the computation with the whole sample is infeasible. This
approach shares a general divide-and-conquer idea originally proposed in computer science
(Cormen et al., 1989).

Example: A simple implementation

Suppose we need O(nζ) operations to compute one estimator θ̂n for true parameter θ. If we
consider q = O(n/b) number of estimations θ̂b,i on subsamples with size b for i = 1, . . . , q, we can
take θ̄b,n,SS := 1

q
∑q

i=1 θ̂b,i to approximate θ̂n. Then, only O
(
nbζ−1

)
operations are needed.

47 / 57

Intuition

• Variance reduction: To improve the convergence rate of an estimator, we can try to
decrease its variance if its bias is acceptable. This is inspired by bagging method of Breiman
(1996).

• Build estimators on subsamples: To relieve the computational burden, we can repeat the
estimation with subsamples if the computation with the whole sample is infeasible. This
approach shares a general divide-and-conquer idea originally proposed in computer science
(Cormen et al., 1989).

Example: A simple implementation

Suppose we need O(nζ) operations to compute one estimator θ̂n for true parameter θ. If we
consider q = O(n/b) number of estimations θ̂b,i on subsamples with size b for i = 1, . . . , q, we can
take θ̄b,n,SS := 1

q
∑q

i=1 θ̂b,i to approximate θ̂n. Then, only O
(
nbζ−1

)
operations are needed.

47 / 57

Intuition

• Variance reduction: To improve the convergence rate of an estimator, we can try to
decrease its variance if its bias is acceptable. This is inspired by bagging method of Breiman
(1996).

• Build estimators on subsamples: To relieve the computational burden, we can repeat the
estimation with subsamples if the computation with the whole sample is infeasible. This
approach shares a general divide-and-conquer idea originally proposed in computer science
(Cormen et al., 1989).

Example: A simple implementation

Suppose we need O(nζ) operations to compute one estimator θ̂n for true parameter θ. If we
consider q = O(n/b) number of estimations θ̂b,i on subsamples with size b for i = 1, . . . , q, we can
take θ̄b,n,SS := 1

q
∑q

i=1 θ̂b,i to approximate θ̂n. Then, only O
(
nbζ−1

)
operations are needed.

47 / 57

Intuition

• Variance reduction: To improve the convergence rate of an estimator, we can try to
decrease its variance if its bias is acceptable. This is inspired by bagging method of Breiman
(1996).

• Build estimators on subsamples: To relieve the computational burden, we can repeat the
estimation with subsamples if the computation with the whole sample is infeasible. This
approach shares a general divide-and-conquer idea originally proposed in computer science
(Cormen et al., 1989).

Example: A simple implementation

Suppose we need O(nζ) operations to compute one estimator θ̂n for true parameter θ. If we
consider q = O(n/b) number of estimations θ̂b,i on subsamples with size b for i = 1, . . . , q, we can
take θ̄b,n,SS := 1

q
∑q

i=1 θ̂b,i to approximate θ̂n. Then, only O
(
nbζ−1

)
operations are needed.

47 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling

Recently, Politis (2024) proposed one type of non-stochastic scalable subsampling technique.

Assume that we observe the sample {U1, . . . ,Un}; Ui represents (Xi,Yi); then, scalable
subsampling relies on q = ⌊(n − b)/h⌋ + 1 number of subsamples B1, . . . , Bq where
B j = {U(j−1)h+1, . . . , U(j−1)h+b}; here, ⌊·⌋ denotes the floor function, and h controls the amount of
overlap (or separation) between B j and B j+1.

Tuning b and h can make scalable subsampling samples have different overlapping rates:

• if h = 1, the overlap is the maximum possible;

• if h = 0.2b, there is 80% overlap between B j and B j+1;

• if h = b, there is no overlap between B j and B j+1 but these two blocks are adjacent;

• if h = 1.2b, there is a block of about 0.2b data points that separate the blocks B j and B j+1.

48 / 57

Scalable subsampling estimation of DNN
Define the scalable subsampling DNN estimator as f DNN(X) = 1

q
∑q

j=1 f̂DNN,b, j(X); here,

q = ⌊(n − b)/h⌋ + 1, and f̂DNN,b, j(·) is trained DNN with the j-th subsample B j.

Under below assumptions:

• E(f̂DNN(x) − f (x)) = O(n−Λ/2) uniformly for all x ∈ X for some constant Λ > 0;

• The bias exponent in the assumption above satisfies the inequality: Λ > ξ
ξ+d .

we have

Theorem 7:
Under appropriate assumptions, let b = h = nβ; β = 1

1+Λ− ξ
ξ+d

. Then, with probability at least

(1 − exp(−n
d
ξ+d log6 n))q: ∥∥∥∥ f DNN − f

∥∥∥∥2
L2(X)

≤ n
−Λ

Λ+ d
ξ+d L(n);

where L(n) is a slowly varying function involving a constant and all log(n) terms.

49 / 57

Scalable subsampling estimation of DNN
Define the scalable subsampling DNN estimator as f DNN(X) = 1

q
∑q

j=1 f̂DNN,b, j(X); here,

q = ⌊(n − b)/h⌋ + 1, and f̂DNN,b, j(·) is trained DNN with the j-th subsample B j.
Under below assumptions:

• E(f̂DNN(x) − f (x)) = O(n−Λ/2) uniformly for all x ∈ X for some constant Λ > 0;

• The bias exponent in the assumption above satisfies the inequality: Λ > ξ
ξ+d .

we have

Theorem 7:
Under appropriate assumptions, let b = h = nβ; β = 1

1+Λ− ξ
ξ+d

. Then, with probability at least

(1 − exp(−n
d
ξ+d log6 n))q: ∥∥∥∥ f DNN − f

∥∥∥∥2
L2(X)

≤ n
−Λ

Λ+ d
ξ+d L(n);

where L(n) is a slowly varying function involving a constant and all log(n) terms.

49 / 57

Scalable subsampling estimation of DNN
Define the scalable subsampling DNN estimator as f DNN(X) = 1

q
∑q

j=1 f̂DNN,b, j(X); here,

q = ⌊(n − b)/h⌋ + 1, and f̂DNN,b, j(·) is trained DNN with the j-th subsample B j.
Under below assumptions:

• E(f̂DNN(x) − f (x)) = O(n−Λ/2) uniformly for all x ∈ X for some constant Λ > 0;

• The bias exponent in the assumption above satisfies the inequality: Λ > ξ
ξ+d .

we have

Theorem 7:
Under appropriate assumptions, let b = h = nβ; β = 1

1+Λ− ξ
ξ+d

. Then, with probability at least

(1 − exp(−n
d
ξ+d log6 n))q: ∥∥∥∥ f DNN − f

∥∥∥∥2
L2(X)

≤ n
−Λ

Λ+ d
ξ+d L(n);

where L(n) is a slowly varying function involving a constant and all log(n) terms.

49 / 57

Scalable subsampling estimation of DNN
Define the scalable subsampling DNN estimator as f DNN(X) = 1

q
∑q

j=1 f̂DNN,b, j(X); here,

q = ⌊(n − b)/h⌋ + 1, and f̂DNN,b, j(·) is trained DNN with the j-th subsample B j.
Under below assumptions:

• E(f̂DNN(x) − f (x)) = O(n−Λ/2) uniformly for all x ∈ X for some constant Λ > 0;

• The bias exponent in the assumption above satisfies the inequality: Λ > ξ
ξ+d .

we have

Theorem 7:
Under appropriate assumptions, let b = h = nβ; β = 1

1+Λ− ξ
ξ+d

. Then, with probability at least

(1 − exp(−n
d
ξ+d log6 n))q: ∥∥∥∥ f DNN − f

∥∥∥∥2
L2(X)

≤ n
−Λ

Λ+ d
ξ+d L(n);

where L(n) is a slowly varying function involving a constant and all log(n) terms.

49 / 57

Scalable subsampling estimation of DNN
Define the scalable subsampling DNN estimator as f DNN(X) = 1

q
∑q

j=1 f̂DNN,b, j(X); here,

q = ⌊(n − b)/h⌋ + 1, and f̂DNN,b, j(·) is trained DNN with the j-th subsample B j.
Under below assumptions:

• E(f̂DNN(x) − f (x)) = O(n−Λ/2) uniformly for all x ∈ X for some constant Λ > 0;

• The bias exponent in the assumption above satisfies the inequality: Λ > ξ
ξ+d .

we have

Theorem 7:
Under appropriate assumptions, let b = h = nβ; β = 1

1+Λ− ξ
ξ+d

. Then, with probability at least

(1 − exp(−n
d
ξ+d log6 n))q: ∥∥∥∥ f DNN − f

∥∥∥∥2
L2(X)

≤ n
−Λ

Λ+ d
ξ+d L(n);

where L(n) is a slowly varying function involving a constant and all log(n) terms.

49 / 57

Scalable subsampling estimation of DNN
Define the scalable subsampling DNN estimator as f DNN(X) = 1

q
∑q

j=1 f̂DNN,b, j(X); here,

q = ⌊(n − b)/h⌋ + 1, and f̂DNN,b, j(·) is trained DNN with the j-th subsample B j.
Under below assumptions:

• E(f̂DNN(x) − f (x)) = O(n−Λ/2) uniformly for all x ∈ X for some constant Λ > 0;

• The bias exponent in the assumption above satisfies the inequality: Λ > ξ
ξ+d .

we have

Theorem 7:
Under appropriate assumptions, let b = h = nβ; β = 1

1+Λ− ξ
ξ+d

. Then, with probability at least

(1 − exp(−n
d
ξ+d log6 n))q: ∥∥∥∥ f DNN − f

∥∥∥∥2
L2(X)

≤ n
−Λ

Λ+ d
ξ+d L(n);

where L(n) is a slowly varying function involving a constant and all log(n) terms.

49 / 57

Simulation setting
To perform simulations, we consider below models:
• Model-1: Yi = X2

i,1 + sin(Xi,2 + Xi,3) + ϵ, where X ∼ N(0, I3); ϵ ∼ N(0, 1);

• Model-2: Yi = X2
i,1 + sin(Xi,2 + Xi,3)+ exp(−|Xi,4 + Xi,5|)+ ϵ, where X ∼ N(0, I3); ϵ ∼ N(0, 1).

To be consistent with folk wisdom, we build f̂DNN,b,i with a relatively large depth to decrease the
bias but also guarantee that the DNN estimator is in the under-parameterized region. We also
consider other 5 DNN estimators trained with the whole sample:
(1) A DNN possesses the same depth and width as f̂DNN,b,i. We denote it “S-DNN”;
(2) A DNN possesses the same depth as f̂DNN,b,i, but a larger width so that its parameter size is

close to the sample size. We denote it “DNN-deep-1”;
(3) A DNN possesses the same depth as f̂DNN,b,i, but a larger width so that its parameter size is

close to half of the sample size. We denote it “DNN-deep-2”;
(4) A DNN possesses only one hidden layer, but a larger width so that its parameter size is close

to the sample size. We denote it “DNN-wide-1”;
(5) A DNN possesses only one hidden layer, but a larger width so that its parameter size is close

to half of the sample size. We denote it “DNN-wide-2”.
50 / 57

Hyperparameter setting and metric

To evaluate the performance of different DNN estimators, we apply the empirical MSE and
MSPE criteria:

MSE:=
1
n

n∑
i=1

(f̃DNN(xi) − f (xi))2 ; MSPE:=
1
N

N∑
i=1

(f̃DNN(x0,i) − f (x0,i))2;

here f̃DNN(·) represents different DNN estimators and f (·) is the true regression function;
{xi, yi}

n
i=1 are training data; {x0,i, y0,i}

N
i=1 are test data; we take N = 2 · 105.

Simulation results are averaged from 200 replications.

51 / 57

Simulation results

Table 2: MSE/MSPE and Training Time (in seconds) of different DNN models

Estimator: SS-DNN S-DNN DNN-deep-1 DNN-deep-2 DNN-wide-1 DNN-wide-2

Model-1, n = 104

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]
MSE 0.0296 0.0536 0.0533 0.0522 0.0426 0.0431
MSPE 0.0310 0.0564 0.0572 0.0570 0.0453 0.0449
Training Time 353 379 561 468 483 363
Model-2, n = 104

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]
MSE 0.0757 0.0830 0.1076 0.0980 0.0729 0.0728
MSPE 0.0790 0.0875 0.1114 0.1045 0.0754 0.0749
Training Time 359 376 560 471 551 394
Model-2, n = 2 · 104

Width [20,20,20] [20,20,20] [95,95,95] [65,65,65] [2800] [1400]
MSE 0.0490 0.0653 0.0686 0.0675 0.0635 0.0635
MSPE 0.0502 0.0670 0.0692 0.0689 0.0623 0.0626
Training Time 748 775 1684 1198 1549 998

52 / 57

Simulation results
Table 2: MSE/MSPE and Training Time (in seconds) of different DNN models

Estimator: SS-DNN S-DNN DNN-deep-1 DNN-deep-2 DNN-wide-1 DNN-wide-2

Model-1, n = 104

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]
MSE 0.0296 0.0536 0.0533 0.0522 0.0426 0.0431
MSPE 0.0310 0.0564 0.0572 0.0570 0.0453 0.0449
Training Time 353 379 561 468 483 363
Model-2, n = 104

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]
MSE 0.0757 0.0830 0.1076 0.0980 0.0729 0.0728
MSPE 0.0790 0.0875 0.1114 0.1045 0.0754 0.0749
Training Time 359 376 560 471 551 394
Model-2, n = 2 · 104

Width [20,20,20] [20,20,20] [95,95,95] [65,65,65] [2800] [1400]
MSE 0.0490 0.0653 0.0686 0.0675 0.0635 0.0635
MSPE 0.0502 0.0670 0.0692 0.0689 0.0623 0.0626
Training Time 748 775 1684 1198 1549 998

52 / 57

Acknowledgements I

I would like to thank Professor Dimitris Politis. As my advisor, my friend, and my life guider, he
always supported my research and gave me valuable suggestions. Moreover, he led me to a path I
never imagined about.

53 / 57

Acknowledgements I

I would like to thank Professor Dimitris Politis. As my advisor, my friend, and my life guider, he
always supported my research and gave me valuable suggestions. Moreover, he led me to a path I
never imagined about.

53 / 57

Acknowledgements II

I would like to thank my committee members, Ery Arias-Castro, Yian Ma and Danna Zhang.

I would also like to thank scholars I have been honored and humbled to work alongside: Wagner
Barreto-Souza, Rangan Gupta, Nicholas Jacobson, Sayar Karmakar, Christian Pierdzioch, Oisín
Ryan, and Raanju Sundararajan.

54 / 57

Acknowledgements II

I would like to thank my committee members, Ery Arias-Castro, Yian Ma and Danna Zhang.

I would also like to thank scholars I have been honored and humbled to work alongside: Wagner
Barreto-Souza, Rangan Gupta, Nicholas Jacobson, Sayar Karmakar, Christian Pierdzioch, Oisín
Ryan, and Raanju Sundararajan.

54 / 57

Acknowledgements III

I would like to thank all my friends I met during my Ph.D. life.

I would also like to thank the administrative staff, particularly Scott Rollans and Mark Whelan,
for their constant support.

55 / 57

Acknowledgements III

I would like to thank all my friends I met during my Ph.D. life.

I would also like to thank the administrative staff, particularly Scott Rollans and Mark Whelan,
for their constant support.

55 / 57

Acknowledgements IV

I would like to thank my parents. This talk is dedicated to them.

56 / 57

Thank you!

57 / 57

References
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In International

conference on machine learning, pages 214–223. PMLR.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning practice and the classical
bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854.

Bloem-Reddy, B., Whye, Y., et al. (2020). Probabilistic symmetries and invariant neural networks. Journal of
Machine Learning Research, 21(90):1–61.

Breiman, L. (1996). Bagging predictors. Machine learning, 24:123–140.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (1989). Introduction to algorithms. MIT press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
(2014). Generative adversarial nets. Advances in neural information processing systems, 27.

Liu, S., Zhou, X., Jiao, Y., and Huang, J. (2021). Wasserstein generative learning of conditional distribution. arXiv
preprint arXiv:2112.10039.

Pang, T., Yang, X., Dong, Y., Su, H., and Zhu, J. (2020). Bag of tricks for adversarial training. arXiv preprint
arXiv:2010.00467.

Politis, D. N. (2015). Model-free prediction in regression. Springer.

Politis, D. N. (2024). Scalable subsampling: computation, aggregation and inference. Biometrika, 111(1):347–354.

58 / 57

References
Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. The annals of statistics,

10(4):1040–1053.

Wang, Y. and Politis, D. N. (2021). Model-free bootstrap and conformal prediction in regression: Conditionality,
conjecture testing, and pertinent prediction intervals. arXiv preprint arXiv:2109.12156.

Yarotsky, D. and Zhevnerchuk, A. (2020). The phase diagram of approximation rates for deep neural networks.
Advances in neural information processing systems, 33:13005–13015.

Zhou, X., Jiao, Y., Liu, J., and Huang, J. (2023). A deep generative approach to conditional sampling. Journal of the
American Statistical Association, 118(543):1837–1848.

59 / 57

Backup I: Additional slides

60 / 57

Estimation of G(·, ·)

Define the optimal estimator:
H0 = arg min

H
E (Y − H(X,Z))2 = arg min

H
R;

A simple decomposition shows that:

E (Y − H(X,Z))2 = E (Y −G(X,Z) +G(X,Z) − H(X,Z))2 .

Thus, the optimal H0 is unique almost surely and we can take it as the continuous counterpart of G.

61 / 57

Difference between traditional MSE risk

Recall that the risk for standard regression tasks is

E[(Y − h(X))2] := Rs.

Table 3: Comparison between standard regression risk and our risk

Geometry σ-algebra

Rs

The optimal estimator is the projection of Y onto a closed
subspace SX of L2 consisting of all random variables which
can be written in a function of X.

E(Y |X) isDX-measurable.10

R
The optimal estimator is a projection of Y onto an extended
version of SX by random variable Z. Y a.s.

= G(X,Z) isD(X,Z)-measurable.

10DX is the σ-algebra generated by X; E(Y |X) could also equal to Y a.s. if Y isDX-measurable, e.g., E(Y |Y) = Y .
62 / 57

Intuition behind our Deep limit model-free prediction algorithm

We provide a toy example to explain the motivation of our training procedure.

Remark: An illustration example
Suppose we need to estimate the coefficient β of a linear regression model Y = βT · X + ϵ with a fixed design based on
samples {(xi, yi)}ni=1; here, ϵ has zero mean and finite variance.

• OLS: β̂ := arg minβ 1
n

∑n
i=1(yi − β

T
i · xi)2 which is consistent under standard conditions.

• Variant of OLS: β̂∗ := arg minβ 1
n

∑n
i=1(yi − (βT

i · xi + ϵ
∗
i))2 where {ϵ∗i }

n
i=1 are independent of X and can be

generated from any distribution with mean zero and finite variance.

β̂∗ is also consistent although β̂ would generally be more efficient.

Analogously, our DNN-based estimation Ĥ∗ converges to H0 in the mean square sense even using the artificially
generated {Z∗i }

n
i=1.

63 / 57

Estimation ability of DNN

The estimation error of Ĥ can be decomposed into two sources:

(1) The stochastic error, which measures the difference between Ĥ and the best estimator H∗ in a DNN class FDNN;
H∗ := arg min

H∈FDNN

∥H0 − H∥∞;

(2) The approximation error, which measures the difference between H0 and H∗ in a DNN class FDNN.

64 / 57

Preliminary comparisons

Table 4: Comparison between different DNN-based methods

Ĥ ĜKL, ĜWA

Stability The training process is more stable and directly
due to the MSE-like loss function.

The training process is sensitive to the training
setting and depends on Dϕ being optimal given
current step Gρ.

Metrics
The optimization corresponds to minimizing
the Kolmogorov distance between two distribu-
tions.

The optimization corresponds to minimizing
KL-divergence and Wasserstein-1 distance11.

Computability Only one DNN need to be trained. Two DNNs need to be trained adversarially.

11The “distance” between two distributions converges to 0 under the metric of Wasserstein-1 distance or
KL-divergence implies the convergence measured by Kolmogorov distance.

65 / 57

Simulation setting for optimal L2 point prediction

We take the below model from Zhou et al. (2023) to generate n training and T test data:

Yi = X2
i,1 + exp

(
Xi,2 + Xi,3/3

)
+ Xi,4 − Xi,5 +

(
0.5 + X2

i,2/2 + X2
i,5/2
)
· εi;

where Xi and εi come from N(0, I5) and N(0, 1) truncated to [−5, 5]5 and [−5, 5], respectively.

To predict the mean of Y conditional on X = x, we rely on Ŷt =
1
S

∑S
s=1 Π̂(xt,Zs); Zs ∼ N(0, Ip); xt is the t-th

observation of the test data; Π̂ represents trained model Ĥ, ĜKL or ĜWA.

To measure different methods, we repeat the simulations K times and consider the metric:

L̃ =
1
T

T∑
t=1

1
K

K∑
k=1

(Yt,L2 − Ŷk,t)2;

where Yt,L2 is the oracle L2 optimal value of Y conditional on xt; Ŷk,t is the conditional L2 point prediction based on the
k-th training data.

66 / 57

Simulation setting

We apply the same hyperparameter setting to train all DNN.

We take n = 2000, T = 2000, S = 10000, K = 200 to compute the error metric.

For the structure of DNN, we separate the simulation studies into two groups: (a) structures of Ĥ and Ĝ are [35,35]
and [50]12, respectively; (b) structures of Ĥ and Ĝ are all [35,35]. For both groups, D̂ takes the same structure as the
previous work, i.e., [50,25].

For the benchmark method, we apply the numerical integration
∫
Y

y f̂y|xt dy with 1000 subdivisions to approximate
E(Y |xt); f̂y|xt is the kernel conditional density estimator of Y conditional on xt.

12[35,35] stands for a two layers DNN and each layer has 35 neurons; [50] is the DNN structure used in Zhou et al.
(2023). To simplify notations, Ĝ represents ĜKL or ĜWA; D̂ represents D̂KL or D̂WA.

67 / 57

Simulation results

Table 5: Point predictions of different methods under groups (a) and (b).

Group (a) Group (b)
Ĥ ĜKL ĜWA Ĥ ĜKL ĜWA

SGD
p = 1 0.309 3.931 10.39 0.292 3.827 82.97
p = 3 0.298 4.009 11.10 0.285 3.762 56644
p = 5 0.296 4.036 40.39 0.281 3.801 12843
p = 10 0.294 4.116 182.3 0.280 3.812 11378
Adam
p = 1 1.608 1.838 3558 1.572 1.836 14322
p = 3 0.832 1.105 8.480 0.843 1.549 43.48
p = 5 0.604 0.820 43.85 0.591 1.166 43.84
p = 10 0.412 0.495 5.523 0.422 0.817 14.50
RMSProp
p = 1 0.960 1.767 1.910 0.973 1.620 2.326
p = 3 0.601 1.049 1.248 0.597 0.964 1.263
p = 5 0.484 0.779 0.908 0.479 0.727 0.903
p = 10 0.365 0.463 0.598 0.352 0.494 0.508

Note: The error metric L̃ of using conditional kernel density estimation is around 1.210.

68 / 57

Hyperparameter setting

We apply the same hyperparameter setting to train Ĥ, ĜKL and ĜWA: n = 2000; T = 2000; S = 10000; K = 200;
p = 1, 3, 5, 10, m = 20; Learning rate: 0.001; Number of epochs: 10000.

For the optimizer of the adversarial training process, Arjovsky et al. (2017) proposed using optimizer RMSProp with
Wasserstein distance is more appropriate. However, Pang et al. (2020) argued that SGD-based optimizers are better.
We consider three common optimizers, SGD, Adam and RMSProp.

69 / 57

Remark of Theorem 3

• PPI can capture the estimation variability: Since the distribution of R∗0 can approximate the distribution of R0,
PPI captures the estimation variability in finite sample cases to some extent.

• A convolution implied in predictive root: It comes from rewriting the predictive root as
R0 := Y0 − E(Y0|x0) + E(Y0|x0) − Ŷ0,L2 ; Y0 − E(Y0|x0) only depends on PY |x0 and E(Y0|x0) − Ŷ0,L2 is a
(asymptotically shrinking) Gaussian distribution. Thus the below inequality from the previous theorem reveals
that we need less data to achieve the same accuracy of the distribution estimation under this convolution
approach.

sup
y

∣∣∣∣F̂Ĥ(x0 ,Z) ⋆ ϕσ(y) − FY |x0 ⋆ ϕσ(y)
∣∣∣∣ ≤ sup

y

∣∣∣∣F̂Ĥ(x0 ,Z)(y) − FY |x0 (y)
∣∣∣∣ with probability 1.

70 / 57

KL-divergence and Wasserstein-1 distance

• KL-divergence: if f , g are densities of the measures µ, v with respect to a dominating measure λ,

dI(µ, v) :=
∫

S (µ)
f log(f /g)dλ.

where S (µ) is the support of µ on Ω.

• Wasserstein-1 distance: for Ω = R, if F,G are the distribution functions of µ, v respectively, the Kantorovich
metric is defined by

dW (µ, v) :=
∫ ∞

−∞

|F(x) −G(x)|dx

=

∫ 1

0

∣∣∣F−1(t) −G−1(t)
∣∣∣ dt.

71 / 57

Remark on scalable subsampling method

The scalable subsampling method can be applied in making point estimations and developing the estimation inference:

• For point estimation: Take h = b as an example, as the analysis in the previous example, O
(
nbζ−1

)
operations

are needed to compute θ̄b,n,SS. Moreover, we have

E
(
θ̄b,n,SS

)
= E
(
θ̂b,1
)

and Var
(
θ̄b,n,SS

)
≤

1
q

Var
(
θ̂b,1
)

; q = ⌊n/h⌋.

Hence, if the bias of θ̂b,1 is tolerable, θ̄b,n,SS yields a welcome variance reduction.

• For estimation inference: The subsampling distribution Ln,b,h(x) = q−1∑q
i=1 1
{
τbg
(
θ̂b,i − θ̂n

)
≤ x
}

can be used

to approximate the distribution of the estimation root Jn(x) = P
{
τng
(
θ̂n − θ

)
≤ x
}

under mild conditions; where
g(·) could be the identity function or the sup-norm.

72 / 57

Remark on scalable subsampling estimation of DNN

• The two assumptions regarding the bias order of the DNN estimator are feasible:

(1) As revealed in Yarotsky and Zhevnerchuk (2020), the approximation ability in the uniform
sup-norm of a DNN can be as fast as ∆−2ξ/d; ∆ is the total number of parameters in a DNN.
Although this rate is not instructive in practice, the desired bias order is achievable.

(2) As revealed in Belkin et al. (2019), the double-descent of the risk exists for over-parameterized
estimator. Thus, we may take ∆ > n to meet the bias order requirement.

• The saving of computational cost from applying scalable subagging will be more significant for executing
estimation with a large DNN or with a large sample. Assume that a DNN with size W = Θ(nϕ). The total
number of operations to train a DNN is O(n ·W · E); here E represents the number of epochs. When the size of
the DNN is larger than the sample size, O(n ·W · E) ≈ O(nφ); φ > 2. For our estimator, the number of operations
is O(nβφq) = O(n1+β(φ−1)). The ratio of n1+β(φ−1) over nφ is n−(φ−1)(1−β).

73 / 57

Remark on scalable subsampling estimation of DNN

• The two assumptions regarding the bias order of the DNN estimator are feasible:

(1) As revealed in Yarotsky and Zhevnerchuk (2020), the approximation ability in the uniform
sup-norm of a DNN can be as fast as ∆−2ξ/d; ∆ is the total number of parameters in a DNN.
Although this rate is not instructive in practice, the desired bias order is achievable.

(2) As revealed in Belkin et al. (2019), the double-descent of the risk exists for over-parameterized
estimator. Thus, we may take ∆ > n to meet the bias order requirement.

• The saving of computational cost from applying scalable subagging will be more significant for executing
estimation with a large DNN or with a large sample. Assume that a DNN with size W = Θ(nϕ). The total
number of operations to train a DNN is O(n ·W · E); here E represents the number of epochs. When the size of
the DNN is larger than the sample size, O(n ·W · E) ≈ O(nφ); φ > 2. For our estimator, the number of operations
is O(nβφq) = O(n1+β(φ−1)). The ratio of n1+β(φ−1) over nφ is n−(φ−1)(1−β).

73 / 57

Remark on scalable subsampling estimation of DNN

• The two assumptions regarding the bias order of the DNN estimator are feasible:

(1) As revealed in Yarotsky and Zhevnerchuk (2020), the approximation ability in the uniform
sup-norm of a DNN can be as fast as ∆−2ξ/d; ∆ is the total number of parameters in a DNN.
Although this rate is not instructive in practice, the desired bias order is achievable.

(2) As revealed in Belkin et al. (2019), the double-descent of the risk exists for over-parameterized
estimator. Thus, we may take ∆ > n to meet the bias order requirement.

• The saving of computational cost from applying scalable subagging will be more significant for executing
estimation with a large DNN or with a large sample. Assume that a DNN with size W = Θ(nϕ). The total
number of operations to train a DNN is O(n ·W · E); here E represents the number of epochs. When the size of
the DNN is larger than the sample size, O(n ·W · E) ≈ O(nφ); φ > 2. For our estimator, the number of operations
is O(nβφq) = O(n1+β(φ−1)). The ratio of n1+β(φ−1) over nφ is n−(φ−1)(1−β).

73 / 57

Remark on scalable subsampling estimation of DNN

• The two assumptions regarding the bias order of the DNN estimator are feasible:

(1) As revealed in Yarotsky and Zhevnerchuk (2020), the approximation ability in the uniform
sup-norm of a DNN can be as fast as ∆−2ξ/d; ∆ is the total number of parameters in a DNN.
Although this rate is not instructive in practice, the desired bias order is achievable.

(2) As revealed in Belkin et al. (2019), the double-descent of the risk exists for over-parameterized
estimator. Thus, we may take ∆ > n to meet the bias order requirement.

• The saving of computational cost from applying scalable subagging will be more significant for executing
estimation with a large DNN or with a large sample. Assume that a DNN with size W = Θ(nϕ). The total
number of operations to train a DNN is O(n ·W · E); here E represents the number of epochs. When the size of
the DNN is larger than the sample size, O(n ·W · E) ≈ O(nφ); φ > 2. For our estimator, the number of operations
is O(nβφq) = O(n1+β(φ−1)). The ratio of n1+β(φ−1) over nφ is n−(φ−1)(1−β).

73 / 57

	1. Prediction inference of Non-linear Autoregressive models
	2. Deep Model-free generative prediction method for regression
	3. Scalable subsampling for DNN training
	Appendix
	References
	References

