MATH 170A Summer Session II 2024

Discussion 2

08/08/2024

TA: Kejin Wu

1 Definition reviews

Definition 1.1 (Positive definite matrix). If A is $n \times n$ real and symmetric matrix satisfying

 $x^T A x > 0$

for all nonzero $x \in \mathbb{R}^n$, then A is positive definite.

A related theorem is:

Theorem 1.2. Let M be any $n \times n$ nonsingular matrix, and let $A = M^T M$. Then A is positive definite.

Theorem 1.3 (Cholesky Decomposition Theorem). Let A be a positive definite matrix. Then we can decompose A uniquely into a product

 $A = R^T R$ (Cholesky Decomposition)

such that R is upper triangular and has all main diagonal entries r_{ii} positive. R is called the Cholesky factor of A.

A related proposition is:

Proposition 1.4. If matrix A has a Cholesky factor, then A is positive definite. If A is positive definite, then A must have a Cholesky factor

2 Matrix transpose

•
$$(A^T)^T = A$$

- $(A+B)^T = A^T + B^T$
- $(cA)^T = cA^T$
- $(AB)^T = B^T A^T$
- $(A^T)^{-1} = (A^{-1})^T$, if A^{-1} exists.

Exercises

Exercise 3.1. *Find the range of* t *such that* A *is positive definite*

$$A = \begin{bmatrix} 16 & 4 & 8 & 4 \\ 4 & 10 & 8 & 4 \\ 8 & 8 & 12 & 10 \\ 4 & 4 & 10 & t \end{bmatrix}$$

Exercise 3.2. Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ be a 2×2 block matrix, for submatrices $A_{11} \in \mathbb{R}^{n_1 \times n_1}, A_{12} \in \mathbb{R}^{n_1 \times n_2}, A_{21} \in \mathbb{R}^{n_2 \times n_1}, A_{22} \in \mathbb{R}^{n_2 \times n_2}$. If A is positive definite, show that A_{22} is invertible and the matrix $B := A_{11} - A_{12}A_{22}^{-1}A_{21}$ is also positive definite.