MATH 170A Summer Session II 2024

Discussion 5

08/20/2024

TA: Kejin Wu

1 Definition reviews

1.1 Perturbing the coefficient matrix

Up to this point we have considered only the effect of perturbing b in the system Ax = b. We may also consider perturbations of A i.e., the comparison of two systems Ax = b and $(A + \delta A)\hat{x} = b$, where $\|\delta A\|/\|A\|$ is small.

Theorem 1.1. If A is nonsingular and

$$\frac{\|\delta A\|}{\|A\|} < \frac{1}{\kappa(A)}$$

then $A + \delta A$ is nonsingular.

Theorem 1.2. Let A be nonsingular, let $b \neq 0$, and let x and $\hat{x} = x + \delta x$ be solutions of Ax = band $(A + \delta A)\hat{x} = b$, respectively. Then,

$$\frac{\|\delta x\|}{\|\hat{x}\|} \le \kappa(A) \frac{\|\delta A\|}{\|A\|}$$

Remark 1.3. The above theorem is about the relationship between δx and \hat{x} and no nonsingularity assumption of $A + \delta A$ is made.

Theorem 1.4. If A is nonsingular, $\|\delta A\|/\|A\| < 1/\kappa(A), b \neq 0, Ax = b$, and $(A + \delta A)(x + \delta x) = b$, then

$$\frac{\|\delta x\|}{\|x\|} \le \frac{\kappa(A)\frac{\|\delta A\|}{\|A\|}}{1 - \kappa(A)\frac{\|\delta A\|}{\|A\|}}$$

1.2 Inner product

Given two vectors x and y in \mathbb{R}^n , we can define inner product of x and y, which satisfies below properties:

$$\begin{split} \langle x, y \rangle &= \langle y, x \rangle \\ \langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle &= \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle \\ \langle x, \alpha_1 y_1 + \alpha_2 y_2 \rangle &= \alpha_1 \langle x, y_1 \rangle + \alpha_2 \langle x, y_2 \rangle \\ \langle x, x \rangle &\geq 0 \quad \text{with equality if and only if } x = 0 \end{split}$$

The Euclidean norm (2-norm) can be induced from inner product in the space \mathbb{R}^n :

$$||x||_2 = \sqrt{\langle x, x \rangle}$$

The Cauchy-Schwarz inequality can be stated more concisely in terms of the inner product and the Euclidean norm:

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2$$

We can define the angle between (nonzero) x and $y \in \mathbb{R}^n$ to be

$$\theta = \arccos \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2} ; \ \cos \theta = \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2}$$

If n = 2, we are familiar with such a result due to the geometry meaning.

1.3 Orthogonal matrix

Definition 1.5. A matrix $Q \in \mathbb{R}^{n \times n}$ is said to be orthogonal if $QQ^T = I$. This equation says that Q has an inverse, and $Q^{-1} = Q^T$. Since a matrix always commutes with its inverse, we have $Q^TQ = I$ as well. For square matrices, the below equations are equivalent to defining the orthogonal matrix.

$$QQ^T = I \quad Q^TQ = I \quad Q^T = Q^{-1}$$

Theorem 1.6. If $Q \in \mathbb{R}^{n \times n}$ is orthogonal, then for all $x, y \in \mathbb{R}^n$,

- $\langle Qx, Qy \rangle = \langle x, y \rangle$,
- $||Qx||_2 = ||x||_2.$

Exercise 1.7. What conditions must a and b satisfy for the matrix $A = \begin{bmatrix} a+b & b-a \\ a-b & a+b \end{bmatrix}$ to be orthogonal?

1.4 Rotators

Rotate a vector x by angle θ counterclockwise:

$$y = Qx$$
; $Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Rotate a vector x by angle θ clockwise:

$$y = Qx$$
; $Q = \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}$.

1.5 Reflectors

Theorem 1.8. Let $u \in \mathbb{R}^n$ with $||u||_2 = 1$, and define $Q \in \mathbb{R}^{n \times n}$ by $Q = I - 2uu^T$. Then

- (a) Qu = -u.
- (b) Qv = v if $\langle u, v \rangle = 0$.
- (c) $Q = Q^T$ (Q is symmetric).
- (d) $Q^T = Q^{-1}$ (Q is orthogonal).
- (e) $Q^{-1} = Q$.

Theorem 1.9. Let $x, y \in \mathbb{R}^n$ with $x \neq y$ but $||x||_2 = ||y||_2$. Then there is a unique reflector Q such that Qx = y.

1.6 QR decomposition

Theorem 1.10. Let $A \in \mathbb{R}^{n \times n}$. Then there exists an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

Theorem 1.11. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. There exist unique $Q, R \in \mathbb{R}^{n \times n}$ such that Q is orthogonal, R is upper triangular with positive main-diagonal entries, and A = QR.

Exercise 1.12. Do QR decomposition by Reflectots for the matrix

$$A = \begin{bmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{bmatrix}$$