MATH 170A Summer Session II 2024

Discussion 7

08/27/2024

TA: Kejin Wu

1 Definition reviews

1.1 QR decomposition

For a matrix $A \in \mathbb{R}^{m \times n}$; $m \ge n$.

- If Rank(A) = n, then A = QR; $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$, such that Q is orthogonal and $R = \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}$, where $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular.
- If $\operatorname{Rank}(A) = r < n$,

$$A \cdot P = Q \left[\begin{array}{cc} R_{11} & R_{12} \\ 0 & 0 \end{array} \right];$$

 $P \in \mathbb{R}^{n \times n}$; $R_{11} \in \mathbb{R}^{r \times r}$; $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$. So, we need the column pivoting to achieve QR decomposition.

1.2 Singular Value Decomposition (SVD)

SVD is more powerful than QR decomposition.

Theorem 1.1 (SVD Theorem). Let $A \in \mathbb{R}^{m \times n}$ be a nonzero matrix with rank r. Then A can be expressed as a product

$$A = U\Sigma V^T.$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is a nonsquare "diagonal" matrix

$$\Sigma = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r & & \\ & & & & \sigma_r & \\ & & & & & \ddots \end{bmatrix} \quad \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$$

- $\sigma_1, \ldots, \sigma_r$ of Σ are uniquely determined, and they are called the singular values of A.
- The columns of U are orthonormal vectors called right singular vectors of A
- The columns of V are called left singular vectors of A

Theorem 1.3 (Geometric SVD Theorem). Let $A \in \mathbb{R}^{m \times n}$ be a nonzero matrix with rank r. Then \mathbb{R}^n has an orthonormal basis $v_1, \ldots, v_n, \mathbb{R}^m$ has an orthonormal basis u_1, \ldots, u_m , and there exist $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ such that

$$Av_{i} = \begin{cases} \sigma_{i}u_{i} & i = 1, \dots, r \\ 0 & i = r+1, \dots, n \end{cases} \quad A^{T}u_{i} = \begin{cases} \sigma_{i}v_{i} & i = 1, \dots, r \\ 0 & i = r+1, \dots, m \end{cases}$$

Theorem 1.4. The SVD displays orthonormal bases for the four fundamental subspaces $\mathcal{R}(A)$, $\mathcal{N}(A)$, $\mathcal{R}(A^T)$, and $\mathcal{N}(A^T)$:

$$\mathcal{R}(A) = \operatorname{span} \{u_1, \dots, u_r\}$$
$$\mathcal{N}(A) = \operatorname{span} \{v_{r+1}, \dots, v_n\}$$
$$\mathcal{R}(A^T) = \operatorname{span} \{v_1, \dots, v_r\}$$
$$\mathcal{N}(A^T) = \operatorname{span} \{u_{r+1}, \dots, u_m\}$$

where $\mathcal{R}(A) = \{y | y = Ax, x \in \mathbb{R}^n\}$, *i.e.*, range space of A; $\mathcal{N}(A) = \{x \in \mathbb{R}^n | Ax = 0\}$, *i.e.*, the null space of A.

In addition, $Rank(A) = Dim(\mathcal{R}(A))$; $Rank(A) = rank(\Sigma) = r$, i.e., the number of non-zero singular values.

Similar to the condensed version of QR decomposition, we also have the condensed version of SVD:

Theorem 1.5 (Condensed SVD Theorem). Let $A \in \mathbb{R}^{m \times n}$ be a nonzero matrix of rank r. Then there exist $\hat{U} \in \mathbb{R}^{m \times r}$, $\hat{\Sigma} \in \mathbb{R}^{r \times r}$, and $\hat{V} \in \mathbb{R}^{n \times r}$ such that \hat{U} and \hat{V} are isometries, $\hat{\Sigma}$ is a diagonal matrix with main-diagonal entries $\sigma_1 \geq \ldots \geq \sigma_r > 0$, and

$$A = \hat{U}\hat{\Sigma}\hat{V}^T$$

Theorem 1.6. Let $A \in \mathbb{R}^{m \times n}$ have singular values $\sigma_1 \ge \sigma_2 \ge \ldots \ge 0$. Then $||A||_2 = \sigma_1$.

Exercise 1.7. Let $A = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix}$. Find the singular values of A.

Exercise 1.8. Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$$
 (a) Find the rank of A; (b) Find a condensed SVD for A.

Exercise 1.9. Show that if Q is orthogonal, then $||Q||_2 = 1$.

Exercise 1.10. Lee $A = R^{\top}R$ be its Cholesky decomposition, where $A \in \mathbb{R}^{n \times n}$ is a positive definite matrix. Show that $\kappa_2(A) = (\kappa_2(R))^2$.