MATH 170A Summer Session II 2024

Discussion 9

09/03/2024

TA: Kejin Wu

1 Definition reviews

1.1 Singular Value Decomposition (SVD)

Theorem 1.1 (SVD Theorem). Let $A \in \mathbb{R}^{m \times n}$ be a nonzero matrix with rank r. Then A can be expressed as a product

$$A = U\Sigma V^T,$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is a nonsquare "diagonal" matrix

$$\Sigma = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r & & \\ & & & & 0 & \\ & & & & \ddots \end{bmatrix} \quad \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$$

1.2 Least square solution

1.3 Solution of least square problem

Consider an overdetermined system

$$Ax = b, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, m > n$$

Usually, Ax = b does not have an exact solution. Thus, we try to find a solution \hat{x} that minimizes $||A\hat{x} - b||_2$.

Theorem 1.2. Let $A \in \mathbb{R}^{m \times n}$, m > n. Then there exist $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$, such that Q is orthogonal and $R = \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}$, where $\hat{R} \in \mathbb{R}^{n \times n}$ is upper triangular, and A = QR.

Theorem 1.3. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, m > n, and suppose A has full rank. Then the least squares problem for the overdetermined system Ax = b has a unique solution, which can be found by solving the nonsingular system $\hat{R}x = \hat{b}_1$, where $\begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \end{bmatrix} = Q^T b$, $\hat{R} \in \mathbb{R}^{n \times n}$ and $Q \in \mathbb{R}^{m \times m}$ are as in Theorem above.

However, if rank(A) < n, the solution is not unique; there are many x for which $||Ax - b||_2$ is minimized. To get the uniqueness, we consider the following additional problem: find the one for which $||x||_2$ is minimized. As we shall see, this problem always has a unique solution.

Theorem 1.4. The LS solutions is $\hat{x} = V \cdot \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix}$, where $\hat{y}_2 \in \mathbb{R}^{m-r}$ is free and $\hat{y}_1 = (\widehat{\Sigma})^{-1} \cdot \hat{c}$. Simply, the LS Solution set is:

$$\left\{ \hat{x} = V \cdot \left[\begin{array}{c} (\widehat{\Sigma})^{-1} \cdot \hat{c} \\ \hat{y}_2 \end{array} \right] | \hat{y}_2 \text{ is free} \right\};$$

where $U^T b = c = \begin{bmatrix} \hat{c} \\ d \end{bmatrix}$

Thus,

- If rank(A) = n, the LS solution is unique and $\hat{x} = V\hat{y}_1$;
- If rank(A) = r < n, the solution with the minimum 2-norm is unique and can be computed by $\hat{x} = V \cdot \begin{bmatrix} \hat{y}_1 \\ 0 \end{bmatrix}$.

1.4 Pseudoinverse

Definition 1.5 (Pseudoinverse). For $A \in \mathbb{R}^{m \times n}$, the Pseudoinverse of A is the matrix $A^{\dagger} \in \mathbb{R}^{n \times m}$ satisfying:

 $1 A \cdot A^{\dagger} \cdot A = A$ $2 (A \cdot A^{\dagger})^{T} = A \cdot A^{\dagger}$ $3 A^{\dagger} \cdot A \cdot A^{\dagger} = A^{\dagger}$ $4 (A^{\dagger} \cdot A)^{T} = A^{\dagger} \cdot A$

Theorem 1.6. For $A \in \mathbb{R}^{m \times n}$, if $A = U \cdot \Sigma \cdot V^T$ is the SVD, then the Pseudoinverse is given as

$$A^{\dagger} = V \cdot \begin{bmatrix} (\widehat{\Sigma})^{-1} & 0 \\ 0 & 0 \end{bmatrix} \cdot U^{T}$$

We could also have the condensed version of the Pseudoinverse of A.

Theorem 1.7. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, and let $x \in \mathbb{R}^n$ be the minimum-norm solution of

 $||Ax - b||_2$

Then $x = A^{\dagger}b$.

Remark 1.8. Just as the solution of a square nonsingular system Ax = b can be expressed in terms of A^{-1} as $x = A^{-1}b$, the minimum-norm solution to a least squares problem with coefficient matrix $A \in \mathbb{R}^{m \times n}$ can be expressed in terms of the Pseudoinverse A^{\dagger} as $x = A^{\dagger}b$.

Exercise 1.9. Show that if $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $\operatorname{rank}(A) = n$, then $A^{\dagger} = (A^T A)^{-1} A^T$

Exercise 1.10. For

$$A = \begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 4 & -8 \end{bmatrix} ; b = \begin{bmatrix} 4 \\ 5 \\ 4 \end{bmatrix}$$

- 1 Find the (condensed) SVD of A.
- 2 Find the Pseudoinverse of A.
- *3 Find all solutions to the least-squares problem.*
- 4 Find the minimum 2-norm solution of the least-squares.