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1 Definition reviews

1.1 Singular Value Decomposition (SVD)
Theorem 1.1 (SVD Theorem). Let A ∈ Rm×n be a nonzero matrix with rank r. Then A can be
expressed as a product

A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is a nonsquare “diagonal”
matrix

Σ =



σ1

σ2

. . .
σr

0
. . .


σ1 ≥ σ2 ≥ · · · ≥ σr > 0

1.2 Least square solution

1.3 Solution of least square problem
Consider an overdetermined system

Ax = b, A ∈ Rm×n, b ∈ Rm,m > n

Usually, Ax = b does not have an exact solution. Thus, we try to find a solution x̂ that minimizes
∥Ax̂− b∥2.

Theorem 1.2. Let A ∈ Rm×n,m > n. Then there exist Q ∈ Rm×m and R ∈ Rm×n, such that Q is

orthogonal and R =

[
R̂
0

]
, where R̂ ∈ Rn×n is upper triangular, and A = QR.
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Theorem 1.3. Let A ∈ Rm×n and b ∈ Rm,m > n, and suppose A has full rank. Then the least
squares problem for the overdetermined system Ax = b has a unique solution, which can be found

by solving the nonsingular system R̂x = b̂1, where
[
b̂1
b̂2

]
= QT b, R̂ ∈ Rn×n and Q ∈ Rm×m are

as in Theorem above.

However, if rank(A) < n, the solution is not unique; there are many x for which ∥Ax− b∥2 is
minimized. To get the uniqueness, we consider the following additional problem: find the one for
which ∥x∥2 is minimized. As we shall see, this problem always has a unique solution.

Theorem 1.4. The LS solutions is x̂ = V ·
[
ŷ1
ŷ2

]
, where ŷ2 ∈ Rm−r is free and ŷ1 = (Σ̂)−1 · ĉ.

Simply, the LS Solution set is:{
x̂ = V ·

[
(Σ̂)−1 · ĉ
ŷ2

]
| ŷ2 is free

}
;

where UT b = c =

[
ĉ
d

]
Thus,

• If rank(A) = n, the LS solution is unique and x̂ = V ŷ1;

• If rank(A) = r < n, the solution with the minimum 2-norm is unique and can be computed

by x̂ = V ·
[
ŷ1
0

]
.

1.4 Pseudoinverse
Definition 1.5 (Pseudoinverse). For A ∈ Rm×n, the Pseudoinverse of A is the matrix A† ∈ Rn×m

satisfying:

1 A · A† · A = A

2
(
A · A†)T = A · A†

3 A† · A · A† = A†

4
(
A† · A

)T
= A† · A

Theorem 1.6. For A ∈ Rm×n, if A = U · Σ · V T is the SVD, then the Pseudoinverse is given as

A† = V ·
[
(Σ̂)−1 0
0 0

]
· UT

We could also have the condensed version of the Pseudoinverse of A.
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Theorem 1.7. Let A ∈ Rm×n and b ∈ Rm, and let x ∈ Rn be the minimum-norm solution of

∥Ax− b∥2

Then x = A†b.

Remark 1.8. Just as the solution of a square nonsingular system Ax = b can be expressed in
terms of A−1 as x = A−1b, the minimum-norm solution to a least squares problem with coefficient
matrix A ∈ Rm×n can be expressed in terms of the Pseudoinverse A† as x = A†b.

Exercise 1.9. Show that if A ∈ Rm×n,m ≥ n, and rank(A) = n, then A† =
(
ATA

)−1
AT
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Exercise 1.10. For

A =

 2 −4
3 −6
4 −8

 ; b =

 4
5
4


1 Find the (condensed) SVD of A.

2 Find the Pseudoinverse of A.

3 Find all solutions to the least-squares problem.

4 Find the minimum 2-norm solution of the least-squares.
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