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1 Review:

1.1 Bernoulli distribution

X ∼ Bernoulli(p): P (X = 1) = p = 1− P (X = 0)

1.2 Binomial distribution

X ∼ Binomial(n, p): P (X = k) =
(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Remark 1.1. Some facts:

• If Y1, . . . , Yn
i.i.d.∼ Bernoulli(p), X = Y1 + Y2 + · · ·+ Yn ∼ Binomial(n, p)

• If Y ∼ Binomial(n, p) and Z ∼ Binomial(m, p), Y and Z are independent, then X = Y + Z ∼
Binomial(m+ n, p).

1.3 Multinomial distribution

X := (X1, . . . , Xt) ∼ Multinomial (n, p1, p2, . . . , pt):

P ((X1, . . . , Xt) = (k1, . . . , kt)) =

(
n

k1, . . . , kt

)
pk11 . . . pktt ;

where
∑t

i=1 pi = 1,
∑t

i=1 ki = n, and
(

n
k1,...,kt

)
= n!

k1!k2!···kt! .

Remark 1.2. Some facts:

• If Y1, · · · , Yn
i.i.d.∼ Multinomial (1, p1, p2, . . . , pt), X = Y1+· · ·+Yn ∼ Multinomial (n, p1, p2, . . . , pt).

• The moment generating function of X ∼ Multinomial (n, p1, p2, . . . , pt) is

MX(s) = E
[
es

TX
]
=

(
E
[
es

TY1

])n
=

 t∑
j=1

pje
sj

n

• If Y ∼ Multinomial (n, p1, p2, . . . , pt) and Z ∼ Multinomial (m, p1, p2, . . . , pt), then Y + Z ∼
Multinomial (n+m, p1, p2, . . . , pt)
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• The marginal distribution of Xj for any j = 1, . . . , t

Xj ∼ Binomial (n, pj) ;

note that X1, · · · , Xt are not independent due to the constraint that X1 +X2 + · · ·+Xt = n.

1.4 Goodness-of-fit test (known parameters)

1.4.1 Test setting

For continuous distribution:
H0 : fX(x) = f0(x)

H1 : fX(x) ̸= f0(x)

For discrete models with t classes:

H0 : p1 = p10, . . . , pt = pt0

H1 : pi ̸= pi0 for at least one i

Remark 1.3. To test the density of continuous distribution, we need to reduce data to a set of classes,
i.e., separate the whole domain of the density function to several non-overlapping intervals.

1.4.2 Test statistics

Let r1, r2, . . . , rt be the set of possible outcomes (or ranges of outcomes) associated with each of n inde-
pendent trials, where P (ri) = pi, i = 1, 2, . . . , t. Let Xi = number of times ri occurs, i = 1, 2, . . . , t. Then,
the random variable

D =

t∑
i=1

(Xi − npi0)
2

npi0

has approximately a χ2 distribution with t−1 degrees of freedom. For the approximation to be adequate,
the t classes should be defined so that npi ≥ 5, for all i.

We reject the null hypothesis if

d =
t∑

i=1

(ki − npi0)
2

npi0
≥ χ2

1−α,t−1;

where k1, k2, . . . , kt be the observed frequencies for the outcomes r1, r2, . . . , rt.

1.5 Goodness-of-fit test (unknown parameters)

Suppose that a random sample of n independent observations is taken from fY (y) or pX(k), a pdf having s
unknown parameters. Let r1, r2, . . . , rt be a set of mutually exclusive ranges (or outcomes) associated with
each of the n observations. Let p̂i = estimated probability of ri, i = 1, 2, . . . , t (as calculated from fY (y) or
pX(k) after the s unknown parameters have been replaced by their maximum likelihood estimates). Let
Xi denote the number of times that ri occurs, i = 1, 2, . . . , t. Then, the random variable
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D1 =

t∑
i=1

(Xi − np̂i)
2

np̂i

has approximately a χ2 distribution with t − 1 − s degrees of freedom. For the approximation to be
fully adequate, the ri ’s should be defined so that np̂i ≥ 5 for all i.

Remark 1.4. We pay a price for having to rely on the data to fill in details about the presumed model,
i.e., replacing unknown parameters with their maximum likelihood estimators. More specifically, the power
of the test will decrease since the distribution of our test statistics has a fatter tail so it is harder to detect
a significant effect.
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