Discussion review 4

Math 181B

1 Review

1.1 χ^2 test for independence

- **Test statistics:** Suppose that n observations are taken on a sample space partitioned by the events A_1, A_2, \ldots, A_r and also by the events B_1, B_2, \ldots, B_c . Let $p_i = P(A_i)$; $q_j = P(B_j)$, and $p_{ij} = P(A_i \cap B_j)$, $i = 1, 2, \ldots, r$; $j = 1, 2, \ldots, c$. Let X_{ij} denote the number of observations belonging to the intersection $A_i \cap B_j$. Then
 - the random variable

$$D_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(X_{ij} - np_{ij})^2}{np_{ij}}$$

has approximately a χ^2 distribution with rc-1 degrees of freedom (provided $np_{ij} \geq 5$ for all i and j).

- In practice, p_{ij} is usually **unknown**. To test H_0 : the A_i 's are independent of the B_j 's, we need to estimate p_{ij} first. Then, we can calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where k_{ij} is the number of observations in the sample that belong to $A_i \cap B_j$, i = 1, 2, ..., r; j = 1, 2, ..., c and \hat{p}_i and \hat{q}_j are the maximum likelihood estimates for p_i and q_j , respectively. The null hypothesis should be rejected at the α level of significance if

$$d_2 \ge \chi^2_{1-\alpha,(r-1)(c-1)}$$

(provide $n\hat{p}_i\hat{q}_j \geq 5$ for all i and j.)

• **Degree of freedom:** In general, the number of degrees of freedom associated with a goodness-of-fit statistic is given by the formula

df = number of classes -1 - number of estimated parameters.

So for d_2 , the number estimated parameters is (r-1) + (c-1)

• Intuition: If the events A_i and B_j are independent, then we have $P(A_i \cap B_j) = P(A_i)P(B_j)$ for all i and j. Under the null hypothesis, the expected number of observations that belong to $P(A_i \cap B_j)$ is np_ip_j ; this number should be close to the true observation k_{ij} .

1

1.2 Linear regression

1.2.1 Simple linear regression

• Formula: Given n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, the straight line y = a + bx minimizing

$$L = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

has slope

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n (\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2}$$

and an intercept term

$$a = \frac{\sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i}{n} = \bar{y} - b\bar{x}$$

• Equivalent slope format:

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n (\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{r s_y}{s_x};$$

where

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \; ; \; s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \; ; \; s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Remark about correlation r:

- Correlation r can only quantify the **linear** association.
- Correlation is not equivalent to causation.
- Uncorrelated two random variables may be dependent.

(Advanced techniques, e.g., distance correlation, can quantify both linear and non-linear association.)

• Some facts about simple linear regression

- The regression line always goes through (\bar{x}, \bar{y}) .
- If $x = \bar{x} + s_x$, i.e. x is one standard deviation above the mean, we predict y to be r standard deviations above the mean.

1.2.2 Nonlinear models

If our data present some non-linearity, we can do some transformation on data to create the linear relationship on transformed data:

• Exponential regression:

$$y = ae^{bx} \iff \ln y = \ln a + bx$$
; for $y > 0$

Then, we have

$$b = \frac{n \sum_{i=1}^{n} x_i \ln y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} \ln y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \; ; \; \ln a = \frac{\sum_{i=1}^{n} \ln y_i - b \sum_{i=1}^{n} x_i}{n}$$

• Logarithmic regression:

$$y = ax^b \iff \log y = \log a + b \log x$$
; for $y > 0$

We have:

$$b = \frac{n \sum_{i=1}^{n} \log x_i \cdot \log y_i - \left(\sum_{i=1}^{n} \log x_i\right) \left(\sum_{i=1}^{n} \log y_i\right)}{n \sum_{i=1}^{n} \left(\log x_i\right)^2 - \left(\sum_{i=1}^{n} \log x_i\right)^2} \; ; \; \log a = \frac{\sum_{i=1}^{n} \log y_i - b \sum_{i=1}^{n} \log x_i}{n}$$

• Logistic regression:

$$y = \frac{L}{1 + e^{a + bx}} \iff \ln\left(\frac{L - y}{y}\right) = a + bx; \text{ for } \frac{L - y}{y} > 0$$