Discussion section 5

Math 181B

1 Review

1.1 Intuition of the regression curve

Recall that: Given n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, we can use a straight line y = a + bx to depict which minimizes

$$L = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

However, in practice, it is more appropriate to think of each y value as a random variable Y, which stands for a distribution of possible y-values conditional on every value of x.

Definition 1.1 (Regression curve) Let $f_{Y|x}(y)$ denote the pdf of the random variable Y for a given value x, and let $E(Y \mid x)$ denote the expected value associated with $f_{Y|x}(y)$. The function

$$y = E(Y \mid x)$$

is called the regression curve of Y on x.

1.2 Linear model: A special case of regression curve

In this class, we consider a special case of regression curve:

- $f_{Y|x}(y)$ is a normal pdf for all x.
- The standard deviation, σ , associated with $f_{Y|x}(y)$ is the same for all x.
- The means of all the conditional Y distributions are collinear-that is,

$$y = E(Y \mid x) = \beta_0 + \beta_1 x$$

• All of the conditional distributions represent independent random variables.

1.3 Estimation inference

Let $(x_1, Y_1), (x_2, Y_2), \ldots$, and (x_n, Y_n) be a set of points satisfying the simple linear model, $E(Y \mid x) = \beta_0 + \beta_1 x$. The maximum likelihood estimators for β_0, β_1 , and σ^2 are given by

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} Y_{i})}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - (\sum_{i=1}^{n} x_{i})^{2}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1} \bar{x}$$
$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \hat{Y}_{i}\right)^{2}$$

where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, i = 1, ..., n.$

Moreover, we have

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed.
- $\hat{\beta}_0$ and $\hat{\beta}_1$ are both unbiased: $E\left(\hat{\beta}_0\right) = \beta_0$ and $E\left(\hat{\beta}_1\right) = \beta_1$.
- Var $\left(\hat{\beta}_{1}\right) = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} \bar{x})^{2}}.$
- Var $\left(\hat{\beta}_{0}\right) = \frac{\sigma^{2} \sum_{i=1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n} (x_{i} \bar{x})^{2}} = \sigma^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} \bar{x})^{2}}\right].$
- $\hat{\beta}_1$, \bar{Y} and $\hat{\sigma}^2$ are mutually independent.
- $\frac{n\hat{\sigma}^2}{\sigma^2}$ has a chi square distribution with n-2 degrees of freedom.
- $\frac{n}{n-2} \cdot \hat{\sigma}^2$ is an unbiased estimator for σ^2 .

$$T_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{S/\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

has a Student t distribution with n-2 degrees of freedom; where $S^2 = \frac{1}{n-2} \sum_{i=1}^{n} \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2$. Based on this, we can do a hypothesis test and make a confidence interval for β_1 .