Discussion section 8

Math 181B

1 Review

1.1 Randomized Block Design

From the lecture slides, we have

Block effects Block 1 *Y*₁₂ Y_{1k} $\bar{Y}_{1.}$ Y_{11} β_1 ... Y_{bk} \bar{Y}_{b} . Block b Y_{b1} Y_{b2} β_b $\bar{Y}_{.2}$ $\bar{Y}_{\cdot k}$ Ī... $\bar{Y}_{.1}$ e means μ_1 μ_2 μ_k $\bar{Y}_{j} = \frac{1}{b} \sum_{i=1}^{b} Y_{ij}$ $\bar{Y}_{i\cdot} = \frac{1}{k} \sum_{i=1}^{k} Y_{ij}$ $\bar{Y}_{\ldots} = \frac{1}{bk} \sum_{i=1}^{k} \sum_{j=1}^{b} Y_{ij}$

Let Y_{ij} be the observation in the i^{ih} block assigned to treatment j.

Suppose we get b blocks and k treatments.

Figure 1: The illustration of the RBD

We assume

$$Y_{ij} = \mu_j + \beta_i + \varepsilon_{ij}$$

where ε_{ij} are *i.i.d.* normally distributed with mean zero and variance σ^2 , for i = 1, 2, ..., b and j = 1, 2, ..., k.

We define

- Total sum of squares: SSTOT = $\sum_{j=1}^{k} \sum_{i=1}^{b} (Y_{ij} \overline{Y}_{..})^2$.
- Treatment sum of squares: SSTR = $\sum_{j=1}^{k} \sum_{i=1}^{b} \left(\bar{Y}_{.j} \bar{Y}_{..} \right)^2 = \sum_{j=1}^{k} b \left(\bar{Y}_{.j} \bar{Y}_{..} \right)^2$.
- Block sum of squares: SSB = $\sum_{i=1}^{b} \sum_{j=1}^{k} (\bar{Y}_{i.} \bar{Y}_{..})^2 = \sum_{i=1}^{b} k (\bar{Y}_{i.} \bar{Y}_{..})^2$.

• Error sum of squares: SSE = $\sum_{j=1}^{k} \sum_{i=1}^{b} (Y_{ij} - \bar{Y}_{.j} - \bar{Y}_{.i} + \bar{Y}_{..})^2$.

Some facts:

- SSTOT = SSTR + SSB + SSE.
- SSTR, SSB, and SSE are independent random variables.
- When $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ is true, SSTR $/\sigma^2$ has a chi square distribution with k-1 degrees of freedom.
- When $H_0: \beta_1 = \beta_2 = \ldots = \beta_b$ is true, SSB/σ^2 has a chi square distribution with b-1 degrees of freedom.
- Regardless of whether the μ_j 's and/or the β_i 's are equal, SSE $/\sigma^2$ has a chi square distribution with (b-1)(k-1) degrees of freedom.
- When $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ is true,

$$F = \frac{\text{SSTR}/(k-1)}{\text{SSE}/(b-1)(k-1)}$$

has an F distribution with k-1 and (b-1)(k-1) degrees of freedom.

• When $H_0: \beta_1 = \beta_2 = \ldots = \beta_b$ is true,

$$F = \frac{\text{SSB}/(b-1)}{\text{SSE}/(b-1)(k-1)}$$

has an F distribution with b-1 and (b-1)(k-1) degrees of freedom.