center

Spread

Quantitative variable: record amounts and quantities, e.g., number of
students in a class, distance between you and your hometown.

Qualitative/Categorical variable: define groups in your data, e.g., students’
major in a college, fish species in a lake.

Mean: the average value of the data set.
X1+t Xy
n
Median: the middle of the data set when the values of the data set are
ranked from smallest to largest.

nis odd: the middle value in the data set
n is even: average of the two middle values in the data set

X =

. Mode: the number that appears most often in the data set.

Bar and pie charts can describe categorical data; Histograms and Box
plots can depict quantitative data.

The shape of histograms: Skewed to left/right, symmetric, bimodal,
multimodal and uniform.

The mean is more sensitive to outliers
The median is less sensitive to outliers

After arranging the data in increasing order, the interquartile range (IQR) is
the difference between the 25th percentile (Q;) and 75th percentile (Q3) of

the data: IQR = Q5 — Q,

The range of the data is defined as the difference between the maximum and
minimum values: .
range = max —min

The variance is the average of the squared differences from the Mean.
(1 = %)% + -+ + (o — %)

n—1
The standard deviation i1s a measure of how spread out numbers are.
_ J(xl 0?4t Oy — D)2

n—1

2 —
=

S

Sx

The z-score: X;—X

» Example: 1,2,3,4,5,6, 7.

Median = 4,0 =2.5,03 =5.5,IQR = 3.

Example: 1,2, 3,4,5,6,7,50
Median = 4.5, 01 =2.5,03 =6.5,IQR = 4.

Boxplot of Savings

@ » OUTLIER

— Last value before upper fence (1.5*IQR above Q;)

——— D Q3
<— —» Median
—_— Ql

~

IQR

Last value before lower fence (1.5*IQR below Q)



Correlation can be used to measure the linear association between two quantitative variables.

Correlation does not imply causation.
Lurking variable ---- We call a hidden variable, behind a relationship and simultaneously affecting the other two variables

We have learned that linear regression can be used to predict the response

variable. To perform the linear regression in an appropriate way, we need The (sample) correlation between x and y:
check the conditions: (1) Quantitative variable; (2) Straight enough; (3) No

n —-— —
outliers. r = 1 2 <xi — x) <Yi _y>
n-— 1i=1 Sy Sy

If r > 0, then x and y are positively associated
If r < 0, then x and y are negatively associated

The (least squares) regression line is the line that minimizes the sum of
the squares of the residuals

e | The coefficient of determination is called R? (pronounced “R squared”),
N ” X " b which is the fraction of the variation in y explained by the regression
— - R? =12

If we focus on a line which has the equation: by = y— b1 x.

b b by = & If x = X + s, meaning the explanatory variable is one standard

Yy =0by+01x, 1 — Sy o Lo o o . .
deviation above the mean, the prediction for the response variable is

when the value for the explanatory variable is xo, response variable is yq We predictytobe 1 standard deviations above the mean.

The value of R? is not usually helpful in determining whether regression is

Here, we use J to denote the predicted response variable, where by is the appropriate. It only says how much variation is explained by the regression.
intercept and by is the slope
For each pointi = 1,...,n, the vertical distance y; — §; is called the Also know residual plot; extrapolation, curvature, heteroskedasticity,

prediction error or residual outliers, high leverage points, influential points



Definition of complement event

The complement of an event A, denoted A€, is the event that A does not
occur.

Complement rule
We have P(D¢) = 1 — P(D) for all events D.

Definition of disjoint events

Two events are called disjoint or mutually exclusive if they can not both
occur.

Addition rule
If A and B are disjoint, then P(A or B) = P(A) + P(B).

|

In general, P(A or B) = P(A) + P(B) — P(A and B).

N

Definition of Conditional Probability

Suppose A and B are events and P(A) > 0. We define the conditional

probability of B given A to be P(ANB)
P(BlA) = ——5—

Definition of Independent

Two events A and B are called independent if the occurrence of one does
not affect the probability that the other occurs. In this case, we have
P(B) = P(B|A).

The following three are equivalent:
(1) P(B) = P(B|A) (2) P(A) = P(A|B) (3)P(ANB) = P(A)P(B)

Venn Diagram

Bayes’ Rule

We can reverse the conditional probability by applying the Bayes’ rule:

P(A and B) P(B)P(A|B)

P(BIA) = P(A)  P(B)P(A|B) + P(B)P(A|B°)’

Simpsons paradox, which is a phenomenon in probability and statistics
in which a trend appears in several groups of data but disappears or
reverses when the groups are combined.

Tree Diagram

Example: A standard test for cystic fibrosis in newborns gives a positive

result 90 percent of the time when the baby has cystic fibrosis but gives a
false positive 0.3 percent of the time when the baby is healthy. About one
baby out of 2500 has cystic fibrosis. What is the probability that the baby
has cystic fibrosis if the test is positive?

Solution:

At



Definition of random variable Suppose X and Y are random variables and c is a real number.
A random variable is a quantity whose value is determined by the outcome

of a random event or experiment. Properties of Expectation:
@ E[X +c]=E[X]+c.
o E[cX] = cE[X].

The density f must satisfy: ° E [X + Y] = E [X] + E [Y]'
Discrete Continuous o f(x) > 0 forall x. o E[X — Y1 = E[X] - E[Y
P(X =c¢) P(c) 0 o [~ f(dx=1. [ ] [X] [Y]
b . 3
Pa<X <b) Z P(x;) f f(x) dx Properties of Variance:
i:asx;<b ‘. @ Var(X + ¢) = Var(X).
i = EIX] Youpe) [ s o Var(cX) = c2Var(X), so SD(cX) = [c[SD(X).

@ Var(X =+ Y) = Var(X) + Var(Y) = 2Cov(X, Y)

where Cov(X,Y) = E((X — EXX))(Y — E(Y))).
@ Var(X +Y) = Var(X) + Var(Y) if X and Y are independent.
@ Var(X —Y) = Var(X) + Var(Y) if X and Y are independent.

Var(X) = BIC- ) Y (=P P [ (e fo

alternative way:

2 2
——— Z xX; P(x;) — p ( x f(x) dx) _ 'uz

SD(X) V Var(X) VVar(X) Note: Independent X and Y implies that Cov(X, Y) = 0; however the
converse might not be true.



Bernoulli(p) success (1) with probability p or failure (0) with probability 1 — p {0,1} PX=1)=pandPX=0)=1-p p p(1—p)
. : L . . n
Binomial(n,p)  # of successes in n independent Bernoulli(p) trials ke{01,..,n} PX=k)= (k) pk(1 —p)nk np np(1—p)
1 1-p
Geometric(p) # of independent Bernoulli(p) trials until the first success ke{123,..} PX=k)=Q0-p)¢1p E 7
. # events occur during a time/space interval ~A)k
Poisson(A) . & / p- . . : ke{012, ..} pPX=k) =2 Z A A
(A is the average # occurrences in the given time/space interval) k!
1, 2
: : _ — <x< a+b b—a
Uniform(a,b) all intervals of the same length within [a,b] are equally probable [a, b] f(x) ={b-a ifg=x=b g
0  otherwise 2 12
. time until the first success -Ax 1 1
Exponential(A) ) . : . . [0, o) f(x) = Ae = .0 - -
(A is the average # occurrences in the given time/space interval) 0 otherwise A )2
—(x-w?
Normal(u, 2) R -~ 1 o2 U a?
fO)=2rme >
If X is exponential with parameter A > 0, then X is a memoryless random Know how to read Table Z |
Variab]e, that is Table Z (cont.) Second decimal placeinz 'V
et Areas un(lier the b 4 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
ek o 0.0 0.5000 0.5040  0.5080 0.5120 05160  0.5199 | 0.5239 05279  0.5319  0.5359
P (X >Xx+a | X> a) =D (X > x), for a,x 0. 01 | 05398 05438 05478 05517 05557 05506 | 0.5636 | 0.5675 05714  0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
" 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
X - 6 z' 04 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
IfX~N (]J, o ), then Z = K ~ N (O, 1) —>| 05 | 06915 06950 06985 07019 07054 07088 || 0.7123 | 07157 0.7190  0.7224
o {— 68% —) 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
/ 95% N 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
‘ [ 99]77' . — h 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
-3 -2 —; 0 ; 2 3 0.9 0.8159  0.8186  0.8212 0.8238 0.8264 0.8289 | 0.8315 | 0.8340  0.8365 0.8389
p-% p-2 p- u + n+20 p+3

e.g. P(Z < 0.56) = 0.7123



u and p are parameters (fixed numbers that depend on the population).

X and p are statistics (random variables that depend on the sample).

The distributions of X and p are called sampling distributions.
We can make probability statements about statistics, not parameters.

Goal: We want to understand the shape, center, and spread of these
distributions, which will help us to understand how accurately X and p
estimate u and p respectively.

Definition of Law of Large Numbers

As the sample size n tends to infinity, the sample mean (or sample
proportion) approaches the population mean (or population proportion).
That 1s, we have

lim X = p,

n—00

lim p = p.

n—o0

Central Limit Theorem

Regardless of the population distribution of X, ..., X, coming from, if n is
large, the distribution of X is approximately normal with mean u and
standard deviation o/ v/n.

For most distributions (at most moderately skewed), the distribution of X is
approximately normal if n > 30. '

- the binomial distribution is approximately N(np, 1/np(1 — p)), when

np > 10 and n(1 — p) > 10.

The Central Limit Theorem applies only tolaverages and sumanot to
individual observations.
X 1 + -+ X n

[
e o N )

Xi++ XnNapprox.N(nllv o\/n)

Survey/Sampling methods

e Simple random sample: Choose n people every sample of size n is
equally likely to be chosen.

e Stratified random sample: Divide the population into groups called
strata, then do simple random sampling in each stratum. (Example:
sample 500 men and 500 women rather than any 1000 people.) This
can reduce variability.

@ Cluster sample: Divide the population into clusters. Select a few
clusters at random and sample only from those selected. (Example:
each dorm is representative of the distribution of majors in the
university, then each dorm would be a cluster) This can reduce costs.

e Voluntary response sample: Many people are invited to respond, and
all who respond are counted. (Example: surveys done through the
internet or radio talk shows.) These surveys suffer from voluntary
response bias, and have no scientific value.

Poisson approximation

When n is large and p is small, the Binomial(n, p) distribution can be
approximated by the Poisson distribution with A = np.

Rule of thumb: the Poisson model is a reasonably good approximation of
the Binomial when n > 20 with p < 0.05 or n > 100 with p < 0.10



Confidence Interval

@ Cl is an interval of plausible values that contains the true parameter
value with a specific probability, we call this probability to be
Confidence Level.

@ We are 95 percent confident that our confidence interval contains p, in
the sense that if we took many samples of size 1000 and repeated this
process, 95 percent of the intervals would contain p.

One-proportion z-interval

Suppose n is the sample size p is the population proportion, p is the sample proportion and 0 < a < 1 is the significance level.

Then, the (1 — a) confidence interval is

. pa=® . [pd=p)
P=zapy = Bt Zap ||

N(0,1)

p(1-p)

. . *
The margin of error is z, /, "

density
0.0 01 02 03 04




Type I Error: Reject Hy, when H is true. This happens with probability

equal to the significance level a.

Type II Error: Fail to reject Hy when H, is false. We denote by S the
probability of a Type II error, which depends on the value of p (the true
proportion). The power of the test is 1 — 8, which is the probability of

rejecting Hy when H, is indeed false.

True
H, is true Hy, is true
Fail to reiecl' H0 Correct decision Type Il error
Decision ................................................; ................................................
Reiect HO Type | error Correct decision

a = P(Type | error) = P(Reject Hy| H,, is true)
p = P(Type Il error) = P(Fail to reject H,| H, is true)

Ideally we would like both a, # to be small

Null

Null
Hypothesis

H

0

Type ll
error

Theoretical
non-null value

Alternative
Hypothesis

H

1

Type |
error



Hypothesis Testing
Test Statistics

Confidence Interval

True Sample Approximate Distribution
Parameter(s) | Statistic(s) (From Central Limit Theorem)
D —Po
. . . p(1—p) p(1 — ) Z=
— One Proportion p p p~N|p, ” p+ z% 5 % p(1—p)
n
o A A
(P1—P2) — 0
[ﬁ]@{t {F@W thﬂg @H@SS ) IRV P11 =p1) p2(1—py) SR p1(1 —p1)  Pr(1 —Dy) s -1 p.(d=p)
Two Proportions P1, P2 P1, P2 D7Dz N D= D2 R (1 — D2) £ za - + : s b
nq ny 2 2 nq ny nq np
— But unknown true variance o X — Ug
On g £ z=nN(@D X — p Fit g g = —
— e Mean u X ~7 = + =
o/\n ' ——= ~Th- nl7 n N
Need to vn s~ e N
know
these four Two Means %, —p But unknown true variance g4 Y Sa. % —0
(the other two | x Zd _Fd X4 — d—="n-17 th-1=—3
(paired) Ha a = da"Ha z Vn Sa
are here for P aa/\n Sa/\n nt s4 can hardly be obtained by s; and s, N
completeness)
f [h]o H But unknown true variance g
NOT YO tniS CIass e
(Xl 19 XZ) Ak (tul 2 MZ) i (Xl o Xz) e (,ul T ,le) T 9 2
Two Means 1 T 1 1 T iy tn, -2 1 1 it S8 (ory = %) =0
(independentr M1, U2 fl! )EZ n_1 x E Sp n_1 E (561 i .fz) i tn 52 _Zg b Sp A T e tiee s 1 g
equal variance) A (e BREL o1, + Ty
(note that 0 = 07 = 05) i 55 f5 (n1—1)sf+(n2—1)s§)
n1+n2_2
But unknown true variance gy, 0,
Xy —Xp) — (ug — 1) X1 — X)) — (U1 — 12) (X —x)—0
Two Means ~7 ~Tqr s2 s2 tmin(n,-1n,-1) = — /——
— i X1, X = = 21,22 2 2
(lndepend.ent, M1, U2 X1, X2 0-_12 0-_22 i N ﬁ (X1 — %) tmin(nl—l,nz—l),% 5 + - si N 3
unequal variance) T T, Lo ny ' ny
For this class, we use df = min(n; —1,n, — 1)
for simplicity and as a conservative approximation
(smaller df >>> bigger tail in Ty distribution)
2 2\2
(& +2)
> min(n; — 1,n, — 1)

RN EINE

n|—1



Regression Inference Coef  SECoef T-Value P-Value

-35.075 1.832 -19.15  0.000
0.0178 (0.000918 19.39 0.000

yi =Bo +P1xi + €

We usually assume that €; has 0 mean and finite variance o J \
-2+t (r — 2)? prrrrmmrmss s b, e, !
Sy = \/ " A H : bl .
n—1 SE(bl)z S —— - T =
_\](y1—7)2+"'+(Yn—}7)2 Sy Vn — 1 SE(b1)
Sy = n—1 : . : with n — 2 degrees of freedom :
where §i = bo + bixi 5 = J 1 Z(}’ Cgp B e

n-2 4

*
--------------------------------------------

Confidence interval for slope bi1-t,_,. SE(b1), by + 5. SE(by))

b
Hypothesis testing for slope Test Hy:B1=0,Hy : 1 # 0 Teststatistic T = SE(lb )
1
Know how to read *
Fit 95% CI 95% PI
_ 69.8751 (69.6838,70.0665) (65.0844, 74.6659)
Minitab outputs *
A 95% confidence interval for the mean response p, = By + 1 x".
not vor this class s&(w) = jST (x* = 22 - SE2(by) Clis [uy =t 5 aSE(iy) 1y + t;;_z,%SE(uy)]

A 95% prediction interval for an individual response y* = By + B1x* +&*. Y = o + f1x”

not tor this class st@) = \/52 +fni+ (x* — ¥)2 - SE%(b,) Plis [y e t;_Z%SE(f/),fl 4 t:l_Z%SE(f/)]




Chi-square Tests

If Zy,...,Z are independent, standard normal random variables, then the

sum of their squares,
k
0=) .7,
i=1

has the chi-squared distribution with k£ degrees of freedom, which usually
denoted as Q ~ y?(k).

Chi-square test for goodness-of-fit: to test whether categorical data are
generated from a specified probability distribution.

Example:

Type Observed Expected
round, yellow 315 (556)(9/16) = 312.75
round, green 108 (556)(3/16) = 104.25

wrinkled, yellow 101 (556)(3/16) = 104.25
wrinkled, green 32 (556)(1/16) = 34.75

Hy: In this experiment, 9/16 of peas should be round and yellow, 3/16 should
be round and green, 3/16 should be wrinkled and yellow, and 1/16 should be
wrinkled and green.

H,: The four types of peas arise with some other probabilities.

= ... ~047.

_ (Observed — Expected)?
X = Z Expected

categories

df = (categories — 1)

p-value is P(xg; = 0.47) ~ 0.93

Three different kinds of chi-square tests:
@ Chi-square test for goodness-of-fit.
@ Chi-square test for homogeneity.
e Chi-square test for independence.

The chi-square test for goodness-of-fit is used when we have one categorical
variable. The other two tests are used when we want to determine whether
two categorical variables are associated.

@ Chi-square test for homogeneity: to compare the distributions of two
or more groups for the same categorical variable.

e Chi-square test for independence: to test whether two categorical
variables are independent.

The mechanics are exactly the same, regardless of whether we are testing

homogeneity or independence. rmeereernee e ‘
Exa mpIe: Observed Counts The expected count in a cell is Expecte d Counts
Boys Girls | Total ~ § "R XCoumniow Boys  Girls
Grades 117 130 | [247 St " Grades A117.3] 129.7
Popular 50 91 141 £ D47 preeeees _ pular 67.0 74.0
Sports 60 30| 90 e —L17.3: Sports 427  47.3

Total 227 251 | | 478

Hj: boys and girls are the same in how they prioritize grades, popularity, and sports.

Hy: boys and girls prioritize grades, popularity, and sports differently.

) (Observed — Expected)?
=2l 2

Expected =~ 2146,

rows columns
df = (rows — 1)(columns — 1)

p-value is P(x2%, = 21.46) ~ 0.000022



